231
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Subsurface defect evolution and crystal-structure transformation of single-crystal copper in nanoscale combined machining

, , , , &
Pages 38-58 | Received 27 Jan 2020, Accepted 11 Aug 2020, Published online: 01 Sep 2020

References

  • G.K. Binnig, C.F. Quate and C. Gerber, The atomic force microscope. Phys. Rev. Lett 56 (1986), pp. 930–933. doi: 10.1103/PhysRevLett.56.930
  • Y. Yan, J. Wang, Y. Geng, Z. Fang and Y. He, Implementation of AFM tip-based nanoscratching process on single crystal copper: study of material removal state. Appl. Surf. Sci 459 (2018), pp. 723–731. doi: 10.1016/j.apsusc.2018.08.090
  • T. Strahlendorff, G. Dai and D. Bergmann, Tip wear and tip breakage in high-speed atomic force microscopes. Ultramicroscopy 201 (2019), pp. 28–37. doi: 10.1016/j.ultramic.2019.03.013
  • F. Xu, F. Fang and X. Zhang, Hard particle effect on surface generation in nano-cutting. Appl. Surf. Sci 425 (2017), pp. 1020–1027. doi: 10.1016/j.apsusc.2017.07.089
  • J. Wang, X. Zhang and F. Fang, A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl. Surf. Sci 455 (2018), pp. 608–615. doi: 10.1016/j.apsusc.2018.05.091
  • M. Papanikolaou and K. Salonitis, Fractal roughness effects on nanoscale grinding. Appl. Surf. Sci 467 (2019), pp. 309–319. doi: 10.1016/j.apsusc.2018.10.144
  • H. Dai, G. Chen, C. Zhou, Q. Fang and X. Fei, A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation. Appl. Surf. Sci 393 (2017), pp. 405–416. doi: 10.1016/j.apsusc.2016.10.014
  • J.E. Marsden and M. West, Discrete mechanics and variational integrators. Acta Numer. 10 (2001), pp. 357–514. doi: 10.1017/S096249290100006X
  • U. Landman, W.D. Luedtke, N.A. Burnham and R.J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248(4954) (1990), pp. 454–461. doi: 10.1126/science.248.4954.454
  • B. Meng, D. Yuan, J. Zheng, P. Qiu and S. Xu, Tip-based nanomanufacturing process of single crystal SiC: Ductile deformation mechanism and process optimization. Appl. Surf. Sci 500 (2020), pp. 144039. doi: 10.1016/j.apsusc.2019.144039
  • Q. Kang, X. Fang and L. Sun, Research on mechanism of nanoscale cutting with arc trajectory for monocrystalline silicon based on molecular dynamics simulation. Comp. Mater. Sci 170 (2019), pp. 109175. doi: 10.1016/j.commatsci.2019.109175
  • Y. Hao, M.S. Bharathi and L. Wang, The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159) (2013), pp. 720–723. doi: 10.1126/science.1243879
  • A. Sharma, D. Datta and R. Balasubramaniam, Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper. Comp. Mater. Sci 153 (2018), pp. 241–250.
  • H.T. Liu, X.F. Zhu, Y.Z. Sun and W.K. Xie, Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals. Appl. Surf. Sci 422 (2017), pp. 413–419. doi: 10.1016/j.apsusc.2017.06.059
  • H. Dai, H. Du, J. Chen and G. Chen, Investigation of tool geometry in nanoscale cutting single-crystal copper by molecular dynamics simulation. P. I. Mech. Eng. J-J. Eng 233(8) (2019), pp. 1208–1220.
  • L. Zhang, H. Zhao, L. Dai and Y. Yang, Molecular dynamics simulation of deformation accumulation in repeated nanometric cutting on single-crystal copper. RSC Adv. 5(17) (2015), pp. 12678–12685. doi: 10.1039/C4RA12317D
  • Y. Zhao, X. Wei and Y. Zhang, Crystallization of amorphous materials and deformation mechanism of nanocrystalline materials under cutting loads: a molecular dynamics simulation approach. J. Non-Cryst. Solids 439 (2016), pp. 21–29. doi: 10.1016/j.jnoncrysol.2016.02.014
  • S.Z. Chavoshi, S. Goel and X. Luo, Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting. Model. Simul. Mater. Sc 24(1) (2015), pp. 015002. doi: 10.1088/0965-0393/24/1/015002
  • Q. Wang, Q. Bai, J. Chen, H. Su, Z. Wang and W. Xie, Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper. Nanoscale Res. Lett 10(1) (2015), pp. 396. doi: 10.1186/s11671-015-1082-1
  • Q. Wang, Q. Bai, J. Chen, Y. Sun, Y. Guo and Y. Liang, Subsurface defects structural evolution in nano-cutting of single crystal copper. Appl. Surf. Sci 344 (2015), pp. 38–46. doi: 10.1016/j.apsusc.2015.03.061
  • Q. Liu, L. Deng, X. Wang and J. Li, Formation of stacking fault tetrahedron in single-crystal Cu during nanoindentation investigated by molecular dynamics. Comp. Mater. Sci 131 (2017), pp. 44–47. doi: 10.1016/j.scriptamat.2016.10.020
  • J. Silcox and P.B. Hirsch, Direct observations of defects in quenched gold. Philos. Mag 4(37) (1959), pp. 72–89. doi: 10.1080/14786435908238228
  • J. Zhang, T. Sun, Y. Yan and Y. Liang, Molecular dynamics study of scratching velocity dependency in AFM-based nanometric scratching process. Mat. Sci. Eng: A 505(1-2) (2009), pp. 65–69. doi: 10.1016/j.msea.2008.10.049
  • S.M. Foiles, M.I. Baskes and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12) (1986), pp. 7983–7991. doi: 10.1103/PhysRevB.33.7983
  • M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12) (1984), pp. 6443–6453. doi: 10.1103/PhysRevB.29.6443
  • J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B Condens. Matter 39(8) (1989), pp. 5566–5568. doi: 10.1103/PhysRevB.39.5566
  • T. Inamura, N. Takezawa and N. Taniguchi, Atomic-scale cutting in a computer using crystal models of copper and diamond. Cirp Ann-Manuf. Techn 41(1) (1992), pp. 121–124. doi: 10.1016/S0007-8506(07)61166-4
  • L. Kelchner, Dislocation nucleation and defect structure during surface Indentation. Phys. Rev. B 58(17) (1998), pp. 11085–11088. doi: 10.1103/PhysRevB.58.11085
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open Visualization tool. Model. Simul. Mater. Sc 18(1) (2009), pp. 015012. doi: 10.1088/0965-0393/18/1/015012
  • A. Stukowski, V.V. Bulatov and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sc 20(8) (2012), pp. 085007. doi: 10.1088/0965-0393/20/8/085007
  • P.A. Romero, G. Anciaux, A. Molinari and J.-F. Molinari, Insights into the thermo-mechanics of orthogonal nanometric machining. Comp. Mater. Sci 72 (2013), pp. 116–126.
  • M. Arzaghi, B. Beausir and L.S. Tóth, Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear. Acta Mater. 57(8) (2009), pp. 2440–2453. doi: 10.1016/j.actamat.2009.01.041
  • Y.T. Zhu, X.Z. Liao and X.L. Wu, Deformation twinning in nanocrystalline materials. Prog. Mater. Sci 57(1) (2012), pp. 1–62. doi: 10.1016/j.pmatsci.2011.05.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.