1,550
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The effects of elastic cycling in nanoindentation of a metallic glass

ORCID Icon & ORCID Icon
Pages 3141-3154 | Received 25 Apr 2020, Accepted 16 Aug 2020, Published online: 15 Sep 2020

References

  • D. Weaire, M.F. Ashby, J. Logan, and M.J. Weins, On the use of pair potentials to calculate the properties of amorphous metals, Acta Metall. 19 (1971), pp. 779–788. doi: 10.1016/0001-6160(71)90134-9
  • H.F. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimäki, and M. Daymond, Measuring strain distributions in amorphous materials, Nat. Mater. 4 (2005), pp. 33–36. doi: 10.1038/nmat1266
  • T.C. Hufnagel, R.T. Ott, and J. Almer, Structural aspects of elastic deformation of a metallic glass, Phys. Rev. B 73 (2006), Article ID: 064204. doi: 10.1103/PhysRevB.73.064204
  • U.K. Vempati, P.K. Valavala, M.L. Falk, J. Almer, and T.C. Hufnagel, Length-scale dependence of elastic strain from scattering measurements in metallic glasses, Phys. Rev. B 85 (2012), Article ID: 214201. doi: 10.1103/PhysRevB.85.214201
  • J. Ding, Y.Q. Cheng, and E. Ma, Correlating local structure with inhomogeneous elastic deformation in a metallic glass, Appl. Phys. Lett. 101 (2012), Article ID: 121917. doi: 10.1063/1.4754121
  • T. Egami, T. Iwashita, and W. Dmowski, Mechanical properties of metallic glasses, Metals 3 (2013), pp. 77–113. doi: 10.3390/met3010077
  • A.L. Greer and Y.H. Sun, Stored energy in metallic glasses due to strains within the elastic limit, Philos. Mag. 96 (2016), pp. 1643–1663. doi: 10.1080/14786435.2016.1177231
  • C.E. Packard, L.M. Witmer, and C.A. Schuh, Hardening of a metallic glass during cyclic loading in the elastic range, Appl. Phys. Lett. 92 (2008), Article ID: 171911. doi: 10.1063/1.2919722
  • C.E. Packard, E.R. Homer, N. Al-Aqeeli, and C.A. Schuh, Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations, Philos. Mag. 90 (2010), pp. 1373–1390. doi: 10.1080/14786430903352664
  • J.H. Perepezko, S.D. Imhoff, M.W. Chen, J.Q. Wang, and S. Gonzalez, Nucleation of shear bands in amorphous alloys, Proc. Natl. Acad. Sci. USA 111 (2014), pp. 3938–3942. doi: 10.1073/pnas.1321518111
  • C.E. Packard, O. Franke, E.R. Homer, and C.A. Schuh, Nanoscale strength distribution in amorphous versus crystalline metals, J. Mater. Res. 25 (2010), pp. 2251–2263. doi: 10.1557/jmr.2010.0299
  • C. Deng and C.A. Schuh, Atomistic mechanisms of cyclic hardening in metallic glass, Appl. Phys. Lett. 100 (2012), Article ID: 251909. doi: 10.1063/1.4729941
  • N. Wang, F. Yan, and L. Li, Mesoscopic examination of cyclic hardening in metallic glass, J. Non-Cryst. Solids 428 (2015), pp. 146–150. doi: 10.1016/j.jnoncrysol.2015.08.007
  • A. Caron, A. Kawashima, H.-J. Fecht, D.V. Louzguine-Luzgin, and A. Inoue, On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass, Appl. Phys. Lett. 99 (2011), Article ID: 171907. doi: 10.1063/1.3655999
  • D.V. Louzguine-Luzgin, V.Y. Zadorozhnyy, S.V. Ketov, Z. Wang, A.A. Tsarkov, and A.L. Greer, On room-temperature quasi-elastic mechanical behaviour of bulk metallic glasses, Acta Mater. 129 (2017), pp. 343–351. doi: 10.1016/j.actamat.2017.02.049
  • N. Al-Aqeeli, Strengthening behavior due to cyclic elastic loading in Pd-based metallic glass, J. Alloys Comp. 509 (2011), pp. 7216–7220. doi: 10.1016/j.jallcom.2010.10.177
  • T.C. Hufnagel, Cryogenic rejuvenation, Nat. Mater. 14 (2015), pp. 867–868. doi: 10.1038/nmat4394
  • S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, and A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain, Nature 524 (2015), pp. 200–203. doi: 10.1038/nature14674
  • C.M. Meylan, F. Papparotto, S. Nachum, J. Orava, M. Miglierini, V. Basykh, J. Ferenc, T. Kulik, and A.L. Greer. Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling, J. Non-Cryst. Solids 548 (2020), Article ID: 120299.
  • K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  • J.S. Field and M.V. Swain, A simple predictive model for spherical indentation, J. Mater. Res. 8 (1993), pp. 297–306. doi: 10.1557/JMR.1993.0297
  • P. Denis, C.M. Meylan, C. Ebner, A.L. Greer, M. Zehetbauer, and H.J. Fecht, Rejuvenation decreases shear band sliding velocity in Pt-based metallic glasses, Mater. Sci. Eng. A 684 (2017), pp. 517–523. doi: 10.1016/j.msea.2016.12.075
  • W.L. Johnson and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence, Phys. Rev. Lett. 95 (2005), Article ID: 195501. doi: 10.1103/PhysRevLett.95.195501
  • S. Pathak and S.R. Kalidindi, Spherical nanoindentation stress-strain curves, Mater. Sci. Eng. R 91 (2015), pp. 1–36. doi: 10.1016/j.mser.2015.02.001
  • Y. Zhang, W.H. Wang, and A.L. Greer, Making metallic glasses plastic by control of residual stress, Nat. Mater. 5 (2006), pp. 857–860. doi: 10.1038/nmat1758
  • X. Chen, J. Yan, and A.M. Karlsson, On the determination of residual stress and mechanical properties by indentation, Mater. Sci. Eng. A 416 (2006), pp. 139–149. doi: 10.1016/j.msea.2005.10.034
  • C.M. Meylan, Thermomechanical processing of metallic glasses, Ph.D. thesis, University of Cambridge, 2019.