157
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Hot deformation induced microstructure evolution of a novel as-extruded Ni-based P/M superalloy

, , &
Pages 193-210 | Received 17 Aug 2020, Accepted 18 Sep 2020, Published online: 06 Oct 2020

References

  • B. Viguier, F. Touratier and E. Andrieu, High-temperature creep of single-crystal nickel-based superalloy: microstructural changes and effects of thermal cycling. Philos. Mag 91 (2011), pp. 4427–4446. (doi:10.1080/14786435.2011.609151).
  • G. Asala, J. Andersson and O.A. Ojo, A study of the dynamic impact behaviour of IN 718 and ATI 718Plus® superalloys. Philos. Mag 99 (2019), pp. 419–437. (doi:10.1080/14786435.2018.1540891).
  • T.B. Gibbons, The performance of superalloys. Adv. Mater 2 (1990), pp. 583–588. (doi:10.1002/adma.19900021205).
  • T. Bellezze, G. Roventi and R. Fratesi, Electrochemical characterization of three corrosion-resistant alloys after processing for heating-element sheathing. Electrochim. Acta 49 (2004), pp. 3005–3014. (doi:10.1016/j.electacta.2004.01.060).
  • J.H. Xu, H. Gruber, D.Y. Deng, R.L. Peng, and J.J. Moverare,Short-term creep behavior of an additive manufactured non-weldable Nickel-base superalloy evaluated by slow strain rate testing. Acta Mater. 179 (2019), pp. 142–157. (doi:10.1016/j.actamat.2019.08.034).
  • L.M. Tan, Y.P. Li, G.A. He, L. Feng, N. Yan, and L. Jiang, Optimized hot workability of a powder metallurgy nickel-base superalloy. Mater. Charact. 147 (2019), pp. 340–352. (doi:10.1016/j.matchar.2018.11.023).
  • J.P. Shingledecker, N.D. Evans and G.M. Pharr, Influences of composition and grain size on creep–rupture behavior of Inconel® alloy 740. Mater. Sci. Eng. A 578 (2013), pp. 277–286. (doi:10.1016/j.msea.2013.04.087).
  • M. Zhang, G.Q. Liu, H. Wang, and B.F. Hu, Modeling of thermal deformation behavior near γ′ solvus in a Ni-based powder metallurgy superalloy. Comp. Mater. Sci. 156 (2019), pp. 241–245. (doi:10.1016/j.commatsci.2018.09.055).
  • C.Z. Liu, F. Liu, L. Huang, and L. Jiang, Effect of hot extrusion and heat treatment on microstructure of nickel-base superalloy. T. Nonferr. Metal. Soc. 24 (2014), pp. 2544–2553. (doi:10.1016/S1003-6326(14)63381-1).
  • L.F. Nie, L.W. Zhang, Z. Zhi, and W. Xu, Constitutive modeling of dynamic recrystallization kinetics and processing maps of solution and aging FGH96 superalloy. J. Mater. Eng. Perform. 22 (2013), pp. 3728–3734. (doi:10.1007/s11665-013-0699-4).
  • B. Fang, Z. Ji, M. Liu, B.F. Hu, C.C. Wang, G.F. Tian, M. Liu, and C.C. Jia, Study on constitutive relationships and processing maps for FGH96 alloy during two-pass hot deformation. Mater. Sci. Eng. A 590 (2014), pp. 255–261. (doi:10.1016/j.msea.2013.10.034).
  • R. Deng, F. Liu, L.M. Tan, S.Y. Zhang, Y. Liu, and L. Huang, Effects of scandium on microstructure and mechanical properties of RR1000. J. Alloy. Comp. 785 (2019), pp. 634–641. (doi:10.1016/j.jallcom.2019.01.214).
  • B.J. Foss, S. Gray, M.C. Hardy, S. Stekovic, D.S. McPhail, and B.A. Shollock, Analysis of shot-peening and residual stress relaxation in the nickel-based superalloy RR1000. Acta Mater. 61 (2013), pp. 2548–2559. (doi:10.1016/j.actamat.2013.01.031).
  • H.B. Zhang, K.F. Zhang, S.S. Jiang, H.P. Zhou, C.H. Zhao, and X.L. Yang, Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation. J. Alloy. Comp. 623 (2015), pp. 374–385. (doi:10.1016/j.jallcom.2014.11.056).
  • D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng, and Z.G. Wu, The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy. Mater. Des. 32 (2011), pp. 696–705. (doi:10.1016/j.matdes.2010.07.040).
  • G.A. He, F. Liu, J.Y. Si, C. Yang, and L. Jiang, Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps. Mater. Des. 87 (2015), pp. 256–265. (doi:10.1016/j.matdes.2015.08.035).
  • Y.Q. Ning, Z.K. Yao, M.W. Fu, and H.Z. Guo, Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. microstructure and mechanism. Mater. Sci. Eng. A 528 (2011), pp. 8065–8070. (doi:10.1016/j.msea.2011.07.053).
  • Y. Ma and A.J. Ardell, Coarsening of γ (Ni–Al solid solution) precipitates in a γ′ (Ni3Al) matrix. Acta Mater. 55 (2007), pp. 4419–4427. (doi:10.1016/j.actamat.2007.04.008).
  • M. Mrotzek and E. Nembach, Ostwald ripening of precipitates during two successive heat treatments performed at different temperatures. Acta Mater. 56 (2008), pp. 150–154. (doi:10.1016/j.actamat.2007.09.024).
  • K. Kim and P.W. Voorhees, Ostwald ripening of spheroidal particles in multicomponent alloys. Acta Mater. 152 (2018), pp. 327–337. (doi:10.1016/j.actamat.2018.04.041).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.