397
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Structural and magnetic characterisation of Co substituted Ni2MnSb Heusler alloy: effect of cobalt substitution on magnetism and Curie temperature

ORCID Icon, ORCID Icon &
Pages 242-256 | Received 17 Jul 2020, Accepted 24 Sep 2020, Published online: 13 Oct 2020

References

  • B. Dahal, C. Huber, W. Zhang, S. Valloppilly, Y. Huh, P. Kharel, and D. Sellmyer, Effect of partial substitution of In with Mn on the structural, magnetic, and magnetocaloric properties of Ni2Mn1+x In1−x Heusler alloys. J. Phys. D Appl. Phys. 52 (2019), pp. 425305–425313.
  • H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, and M.Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9 (2010), pp. 546–549.
  • R.A. De Groot, F.M. Mueller, P.G. Van Engen, and K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50 (1983), pp. 2024–2027.
  • P. Devi, C.S. Mejía, M.G. Zavareh, K.K. Dubey, P. Kushwaha, Y. Skourski, C. Felser, M. Nicklas, and S. Singh, Improved magnetostructural and magnetocaloric reversibility in magnetic Ni-Mn-In shape-memory Heusler alloy by optimizing the geometric compatibility condition. Phys. Rev. Mater. 3 (2019), pp. 062401.
  • M. Siewert, M.E. Gruner, A. Hucht, H.C. Herper, A. Dannenberg, A. Chakrabarti, N. Singh, R. Arróyave, and P. Entel, A first-principles investigation of the compositional dependent properties of magnetic shape memory Heusler alloys. Adv. Eng. Mater. 14 (2012), pp. 530–546.
  • A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J.L. Tamarit, W. Xiong, D. Cong, C. Popescu, and L. Mañosa, Giant barocaloric effect in all- d -metal Heusler shape memory alloys. Phys. Rev. Mater. 3 (2019), pp. 044406.
  • M.E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U.K. Rößler, K. Nielsch, and S. Fähler, Modulations in martensitic Heusler alloys originate from nanotwin ordering. Sci. Rep. 8 (2018), article number:1851.
  • M. Pasquale, C.P. Sasso, L.H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev. B. 72 (2005), pp. 094435.
  • A.K. Nayak, K.G. Suresh, and A.K. Nigam, Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J. Phys. D. Appl. Phys. 42 (2009), pp. 035009.
  • D. Pal, A. Ghosh, and K. Mandal, Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy. J. Magn. Magn. Mater. 360 (2014), pp. 183–187.
  • K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, and K. Ishida, Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl. Phys. Lett. 89 (2006), pp. 182510.
  • S.Y. Yu, L. Ma, G.D. Liu, Z.H. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, and X.X. Zhang, Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys. Appl. Phys. Lett. 90 (2007), pp. 242501.
  • M. Zhang, E. Brück, F.R. de Boer, and G. Wu, Electronic structure, magnetism, and transport properties of the Heusler alloy Fe2CrAl. J. Magn. Magn. Mater. 283 (2004), pp. 409–414.
  • R. Nakane, Y. Shuto, H. Sukegawa, Z.C. Wen, S. Yamamoto, S. Mitani, M. Tanaka, K. Inomata, and S. Sugahara, Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip. Solid. State. Electron. 102 (2014), pp. 52–58.
  • J. de Boeck and G. Borghs, Magnetoelectronics. Phys. World. 12 (1999), pp. 27–32.
  • S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S.N. Piramanayagam, Spintronics based random access memory: a review. Mater. Today 20 (2017), pp. 530–548.
  • R.J. Soulen, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, and A. Barry, Measuring the spin polarization of a metal with a superconducting point contact. Science 282 (1998), pp. 85–88.
  • R. Sahoo, D.M. Raj Kumar, D. Arvindha Babu, K.G. Suresh, A.K. Nigam, and M. Manivel Raja, Effect of annealing on the magnetic, magnetocaloric and magnetoresistance properties of Ni-Co-Mn-Sb melt spun ribbons. J. Magn. Magn. Mater. 347 (2013), pp. 95–100.
  • H.C. Kandpal, G.H. Fecher, and C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D. Appl. Phys. 40 (2007), pp. 1507–1523.
  • M.P. Raphael, B. Ravel, Q. Huang, M.A. Willard, S.F. Cheng, B.N. Das, R.M. Stroud, K.M. Bussmann, J.H. Claassen, and V.G. Harris, Presence of antisite disorder and its characterization in the predicted half-metal Co2MnSi. Phys. Rev. B. 66 (2002), pp. 104429.
  • S. Keshavarz, N. Naghibolashrafi, M.E. Jamer, K. Vinson, D. Mazumdar, C.L. Dennis, W. Ratcliff, J.A. Borchers, A. Gupta, and P. LeClair, Fe2mnge: a hexagonal Heusler analogue. J. Alloys Compd. 771 (2019), pp. 793–802.
  • S. Imada, A. Yamasaki, T. Kanomata, T. Muro, A. Sekiyama, and S. Suga, Composition dependence of Ni magnetic moment in Ni-Mn-based Heusler-type intermetallic compounds. J. Magn. Magn. Mater. 310 (2007), pp. 1857–1858.
  • V. Niculescu, T.J. Burch, K. Raj, and J.I. Budnick, Properties of Heusler-type materials Fe2TSi and FeCo2Si. J. Magn. Magn. Mater. 5 (1977), pp. 60–66.
  • C.D. Gelatt, A.R. Williams, and V.L. Moruzzi, Theory of bonding of transition metals to nontransition metals. Phys. Rev. B. 27 (1983), pp. 2005–2013.
  • S. Roy, E. Blackburn, S.M. Valvidares, M.R. Fitzsimmons, S.C. Vogel, M. Khan, I. Dubenko, S. Stadler, N. Ali, S.K. Sinha, and J.B. Kortright, Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa. Phys. Rev. B. 79 (2009), pp. 235127.
  • M.B. Stearns, Hyperfine field and magnetic behavior of Heusler alloys. J. Appl. Phys. 50 (1979), pp. 2060–2062.
  • Z. Guo, H. Qiu, and Z. Liu, Effects of the substitution of Cu for Sn on structural, magnetic and magnetocaloric properties of half-Heusler CoMnSn alloy. J. Alloys Compd. 777 (2019), pp. 472–477.
  • S.M. Podgornykh, S.V. Streltsov, V.A. Kazantsev, and E.I. Shreder, Heat capacity of Heusler alloys: ferromagnetic Ni2MnSb, Ni2MnSn, NiMnSb and antiferromagnetic CuMnSb. J. Magn. Magn. Mater. 311 (2007), pp. 530–534.
  • T. Kaneko, H. Yoshida, S. Abe, and K. Kamigaki, Pressure effect on the Curie point of the Heusler alloys Ni2MnSn and Ni2MnSb. J. Appl. Phys. 52 (1981), pp. 2046–2048.
  • S.C. Lee, High-efficient and defect tolerant Co2MnSb ternary Heusler alloy for spintronic application. J. Alloys Compd. 765 (2018), pp. 1055–1060.
  • H.M. Huang, S.J. Luo, and K.L. Yao, First-principles investigation of the electronic structure and magnetism of Heusler alloys CoMnSb and Co2MnSb. Phys. B Condens. Matter. 406 (2011), pp. 1368–1373.
  • M.R. Paudel, C.S. Wolfe, A.K. Pathak, I. Dubenko, N. Ali, M.S. Osofsky, J.C. Prestigiacomo, and S. Stadler, Induced magnetic anisotropy and spin polarization in pulsed laser-deposited Co2MnSb thin films. J. Appl. Phys. 111 (2012), pp. 023903.
  • M.R. Paudel, C.S. Wolfe, H. Patton, I. Dubenko, N. Ali, J.A. Christodoulides, and S. Stadler, Magnetic and transport properties of Co2MnSnxSb1-x Heusler alloys. J. Appl. Phys. 105 (2009), pp. 013716.
  • F. Ak, E. Öz, and B. Saatçi, Structural and magnetic properties of Ni2-xCoxMnSb (x: 0.00, 0.25, 0.50 and 1.00) Heusler alloys: the relationship between Curie temperature and lattice parameter. Intermetallics 111 (2019), pp. 106491.
  • S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss, Co2mnsi Heusler alloy as magnetic electrodes in magnetic tunnel junctions. Appl. Phys. Lett. 85 (2004), pp. 79–81.
  • J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192 (1993), pp. 55–69.
  • B. Mahieu, K.H.J. Buschow, G.J. Long, and F. Grandjean, Atomic order and transferred hyperfine field in Co2TiSn reexamined by tin-119 mössbauer spectroscopy. J. Alloys Compd. 377 (2004), pp. 34–37.
  • J. Li, Z. Zhang, Y. Sun, J. Zhang, G. Zhou, H. Luo, and G. Liu, The thermodynamic, electronic and magnetic properties of Ni2MnX (X = Ge, Sn, Sb) Heusler alloys: a quasi-hormonic Debye model and first principles study. Phys. B Condens. Matter. 409 (2013), pp. 35–41.
  • J. Kübler, A.R. William, and C.B. Sommers, Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B. 28 (1983), pp. 1745–1755.
  • R. Sahoo, K.G. Suresh, and A. Das, Structural and magnetic properties probed using neutron diffraction technique in Ni50−xCoxMn38Sb12 (x=0 and 5) Heusler system. J. Magn. Magn. Mater. 371 (2014), pp. 94–99.
  • S. Jha, H.M. Seyoum, M. Demarco, G.M. Julian, D.A. Stubbs, J.W. Blue, M.T.X. Silva, and A. Vasquez, Site and probe dependence of hyperfine magnetic field in L21 Heusler alloys X2MnZ (X=Ni, Cu, Rh, Pd and Z=Ga, Ge, In, Sn, Pb). Hyperfine Interact. 16 (1983), pp. 685–688.
  • T. Kanomata, K. Shirakawa, and T. Kaneko, Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys Ni2MnZ(Z = Al, Ga, In, Sn and Sb). J. Magn. Magn. Mater. 65 (1987), pp. 76–82.
  • L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift Für Phys. 5 (1921), pp. 17–26.
  • S. Louidi, J.J. Sunol, M. Ipatov, and B. Hernando, Effect of cobalt doping on martensitic transformations and the magnetic properties of Ni50−xCoxMn37Sn13 (x = 1, 2, 3) Heusler ribbons. J. Alloys Compd. 739 (2018), pp. 305–310.
  • M. Yin, and P. Nash, The effect of a fourth element (Co, Cu, Fe, Pd) on the standard enthalpy of formation of the Heusler compound Ni2MnSn. J. Alloys Compd. 667 (2016), pp. 184–190.
  • Y. Takamura, R. Nakane, and S. Sugahara, Quantitative analysis of atomic disorders in full-Heusler Co2FeSi alloy thin films using x-ray diffraction with Co Kα and Cu Kα sources. J. Appl. Phys. 107 (2010), pp. 2024.
  • B. Ravel, J.O. Cross, M.P. Raphael, V.G. Harris, R. Ramesh, and L.V. Saraf, Atomic disorder in Heusler Co2MnGe measured by anomalous x-ray diffraction. Appl. Phys. Lett. 81 (2002), pp. 2812–2814.
  • K. Wakamura, Ion conduction in proton-and related defect (super) ionic conductors: mechanical, electronic and structure parameters. Solid State Ionics 180 (2009), pp. 1343–1349.
  • I.M. Fita, R. Puzniak, W. Paszkowicz, A. Wisniewski, N.A. Doroshenko, and V.P. Dyakonov, Relation between oxygen hopping activation energy and unit-cell volume for strongly underdoped RBa2Cu3Ox (R = Y, Nd, La). Phys. Rev. B Condens. Matter Mater. Phys. 66 (2002), pp. 1–5.
  • M.A. Barakat, G. Hayes, and S.I. Shah, Effect of cobalt doping on the phase transformation of TiO2 nanoparticles. J. Nanosci. Nanotechnol. 5 (2005), pp. 759–765.
  • F. Ak, F. Güçlü, B. Saatçi, N. Kervan, and S. Kervan, Crystal structures and magnetic properties of the Co2Mn1−x Vx Sb (0 ≤ x ≤ 1) Heusler compounds. J. Supercond. Nov. Magn. 29 (2016), pp. 409–416.
  • P.J. Webster and R.M. Mankikar, Chemical order and magnetic properties of the Ni2-xMnSb system. J. Magn. Magn. Mater. 42 (1984), pp. 300–308.
  • T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B Condens. Matter Mater. Phys. 72 (2005), pp. 014412.
  • P.J. Webster, Heusler alloys. Contemp. Phys. 10 (1969), pp. 559–577.
  • L. Castelliz, Beitrag Zum Ferromagnetismus yon Legierungen der Ubergangsmetalle mit Elementen der B-Gruppe. Metallkd 46 (1955), pp. 198–203.
  • Y. Kurtulus, R. Dronskowski, G.D. Samolyuk, and V.P. Antropov, Electronic structure and magnetic exchange coupling in ferromagnetic full Heusler alloys. Phys. Rev. B Condens. Matter Mater. Phys 71 (2005), pp. 014425.
  • H.C. Xuan, L.J. Shen, T. Tang, Q.Q. Cao, D.H. Wang, and Y.W. Du, Magnetic-field-induced reverse martensitic transformation and large magnetoresistance in Ni50-xCoxMn32Al18 Heusler alloys. Appl. Phys. Lett. 100 (2012), pp. 172410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.