154
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution dynamics of voids in single crystal copper under triaxial loading condition

&
Pages 1119-1143 | Received 22 Jul 2020, Accepted 22 Jan 2021, Published online: 10 Feb 2021

References

  • G. Kanel, K. Baumung, J. Singer, and S. Razorenov, Dynamic strength of aluminum single crystals at melting, Appl. Phys. Lett. 76 (2000), pp. 3230–3232.
  • G. Kanel, S. Razorenov, A. Bogatch, A. Utkin, V. Fortov, and D. Grady, Spall fracture properties of aluminum and magnesium at high temperatures, J. Appl. Phys. 79 (1996), pp. 8310–8317.
  • S. Razorenov, G. Kanel, K. Baumung, and H. Bluhm, Hugoniot Elastic Limit and Spall Strength of Aluminum and Copper Single Crystals Over a Wide Range of Strain Rates and Temperatures, in AIP Conference Proceedings, AIP, 2002, pp. 503–506.
  • E. Zaretsky, Impact response of cobalt over the 300–1400 K temperature range, J. Appl. Phys. 108 (2010), pp. 083525.
  • D. Curran, L. Seaman, and D. Shockey, Dynamic failure of solids, Phys. Rep. 147 (1987), pp. 253–388.
  • J. Belak, On the nucleation and growth of voids at high strain-rates, J. Comput.-Aided Mater. Design5 (1998), pp. 193–206.
  • E.N. Hahn, S.J. Fensin, T.C. Germann, and G.T. Gray III, Orientation dependent spall strength of tantalum single crystals, Acta Mater. 159 (2018), pp. 241–248.
  • S. Rawat and P. Raole, Molecular dynamics investigation of void evolution dynamics in single crystal iron at extreme strain rates, Comput. Mater. Sci. 154 (2018), pp. 393–404.
  • S. Rawat, M. Warrier, S. Chaturvedi, and V. Chavan, Temperature sensitivity of void nucleation and growth parameters for single crystal copper: A molecular dynamics study, Model. Simul. Mater. Sci. Eng. 19 (2011), pp. 025007.
  • T.P. Remington, E.N. Hahn, S. Zhao, R. Flanagan, J.C.E. Mertens, S. Sabbaghianrad, T.G. Langdon, C.E. Wehrenberg, B.R. Maddox, D.C. Swift, B.A. Remington, N. Chawla, and M.A. Meyers, Spall strength dependence on grain size and strain rate in tantalum, Acta Mater. 158 (2018), pp. 313–329.
  • R.E. Rudd and J.F. Belak, Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper: An atomistic simulation, Comput. Mater. Sci. 24 (2002), pp. 148–153.
  • E. Seppälä, J. Belak, and R. Rudd, Effect of stress triaxiality on void growth in dynamic fracture of metals: A molecular dynamics study, Phys. Rev. B 69 (2004), pp. 134101.
  • E. Seppälä, J. Belak, and R. Rudd, Onset of void coalescence during dynamic fracture of ductile metals, Phys. Rev. Lett. 93 (2004), pp. 245503.
  • Y. Yang, X. Wang, G. Zhang, Y. Zhang, and Z. Yang, Molecular dynamics simulations of single crystal copper nanocubes under triaxial tensile loading, Comput. Mater. Sci. 138 (2017), pp. 377–383.
  • L. Seaman, D.R. Curran, and D.A. Shockey, Computational models for ductile and brittle fracture, J. Appl. Phys. 47 (1976), pp. 4814–4826.
  • T. Antoun, L. Seaman, and D. Curran, Dynamic failure of materials. Vol. 2: Compilation of Russian spall data, Tech. Rep. No. DSWA-TR-96-77-V2, 1998, SRI International, Menlo Park, California .
  • S. Rawat, S. Chandra, V. Chavan, S. Sharma, M. Warrier, S. Chaturvedi, and R. Patel, Integrated experimental and computational studies of deformation of single crystal copper at high strain rates, J. Appl. Phys. 116 (2014), pp. 213507.
  • S. Razorenov and G. Kanel, The strength of copper single crystals and the factors governing metal fracture in uniaxial dynamic stretching, Phys. Metals Metallogr. 74 (1992), pp. 526–530.
  • S.V. Razorenov, G.I. Kanel, and V.E. Fortov, Iron at high negative pressures, J. Exp. Theor. Phys. Lett. 80 (2004), pp. 348–350.
  • D. Tonks, D. Alexander, S. Sheffield, D. Robbins, A. Zurek, and W. Thissell, Spallation strength of single crystal and polycrystalline copper. J. Phys. IV 10(2000)Pr9-787–Pr9-792.
  • J. Wang, S. Yip, S. Phillpot, and D. Wolf, Crystal instabilities at finite strain, Phys. Rev. Lett. 71 (1993), pp. 4182–4185.
  • A. Cuitino and M. Ortiz, Ductile fracture by vacancy condensation in FCC single crystals, Acta Mater.44 (1996), pp. 427–436.
  • V. Lubarda, M. Schneider, D. Kalantar, B Remington, and M. Meyers, Void growth by dislocation emission, Acta Mater. 52 (2004), pp. 1397–1408.
  • D. Erlich, D. Shockey, and L. Seaman, Symmetric rod impact technique for dynamic yield determination, in Shock Waves in Condensed Matter-1981, Nellis, W.J. Seaman, L, Graham, R.A., United States, AIP Publishing, 1982, pp. 402–406.
  • R.W. Minich, J.U. Cazamias, M. Kumar, and A.J. Schwartz, Effect of microstructural length scales on spall behavior of copper, Metall. Mater. Trans. A 35 (2004), pp. 2663–2673.
  • E. Dekel, S. Eliezer, Z. Henis, E. Moshe, A. Ludmirsky, and I. Goldberg, Spallation model for the high strain rates range, J. Appl. Phys. 84 (1998), pp. 4851–4858.
  • S. Eliezer, I. Gilath, and T. Bar-Noy, Laser-induced spall in metals: Experiment and simulation, J. Appl. Phys. 67 (1990), pp. 715–724.
  • H. Jarmakani, B Maddox, C. Wei, D. Kalantar, and M. Meyers, Laser shock-induced spalling and fragmentation in vanadium, Acta Mater. 58 (2010), pp. 4604–4628.
  • G. Kanel, S. Razorenov, A. Utkin, V. Fortov, K. Baumung, H. Karow, D. Rusch, and V. Licht, Spall strength of molybdenum single crystals, J. Appl. Phys. 74 (1993), pp. 7162–7165.
  • E. Moshe, S. Eliezer, E. Dekel, Z. Henis, A. Ludmirsky, I. Goldberg, and D. Eliezer, Measurements of laser driven spallation in tin and zinc using an optical recording velocity interferometer system, J. Appl. Phys. 86 (1999), pp. 4242–4248.
  • E. Moshe, S. Eliezer, E. Dekel, A. Ludmirsky, Z. Henis, M. Werdiger, I. Goldberg, N. Eliaz, and D. Eliezer, An increase of the spall strength in aluminum, copper, and metglas at strain rates larger than 107 s , J. Appl. Phys. 83 (1998), pp. 4004–4011.
  • W. J. Murphy, A. Higginbotham, G. Kimminau, B Barbrel, E M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M. A. Meyers, B Nagler, N. Ozaki, N. Park, B Remington, S. Rothman, S. M. Vinko, T. Whitcher, and J. S. Wark, The strength of single crystal copper under uniaxial shock compression at 100 gpa, J. Phys.: Condens. Matter 22 (2010), pp. 065404.
  • H. Tamura, T. Kohama, K. Kondo, and M. Yoshida, Femtosecond-laser-induced spallation in aluminum, J. Appl. Phys. 89 (2001), pp. 3520–3522.
  • L. Davison, A. Stevens, and M. Kipp, Theory of spall damage accumulation in ductile metals, J. Mech. Phys. Solids 25 (1977), pp. 11–28.
  • J.N. Johnson, Dynamic fracture and spallation in ductile solids, J. Appl. Phys. 52 (1981), pp. 2812–2825.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19.
  • M.S. Daw, and M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett. 50 (1983), pp. 1285–1288.
  • M.S. Daw, and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984), pp. 6443–6453.
  • S. Foiles, M. Baskes, and M.S. Daw, Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986), pp. 7983–7991.
  • S. Rawat, Behaviour of solids under high strain rate deformation, Ph.D. Thesis, 2012, http://hdl.handle.net/10603/274223 .
  • W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985), pp. 1695–1697.
  • W.G. Hoover, Constant-pressure equations of motion, Phys. Rev. A 34 (1986), pp. 2499–2500.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2009), pp. 015012.
  • H. Hemani, M. Warrier, N. Sakthivel, and S. Chaturvedi, Voxel based parallel post processor for void nucleation and growth analysis of atomistic simulations of material fracture, J. Mol. Graph. Model. 50 (2014), pp. 134–141.
  • V. Ikkurthi, H. Hemani, R. Sugandhi, S. Rawat, P. Pahari, M. Warrier, and S. Chaturvedi, Multi-scale computational approach for modelling spallation at high strain rates in single-crystal materials, Procedia Eng. 173 (2017), pp. 1177–1184.
  • S. Rawat, M. Warrier, S. Chaturvedi, and V. Ikkurthi, Multiscale simulations of damage of perfect crystal cu at high strain rates, Pramana 83 (2014), pp. 265–272.
  • S. Rawat and S.P. Joshi, Effect of multiaxial loading on evolution of twinning in magnesium single crystals, Mater. Sci. Eng. A 659 (2016), pp. 256–269.
  • S. Rawat and N. Mitra, Evolution of tension twinning in single crystal Ti under compressive uniaxial strain conditions, Comput. Mater. Sci. 141 (2018), pp. 302–312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.