167
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Analysis of microstructure, kinetics of isothermal solidification and mechanical properties of IN718/MBF-20/SS316L TLP joints

ORCID Icon, &
Pages 1726-1749 | Received 25 Jan 2021, Accepted 08 May 2021, Published online: 27 May 2021

References

  • J.T. Xiong, Q. Xie, J.L. Li, F.S. Zhang, and W.D. Huang, Diffusion bonding of stainless steel to copper with tin bronze and gold interlayers. J. Mater. Eng. Perform 21 (2012), pp. 33–37. doi:10.1007/s11665-011-9870-y.
  • A. AlHazaa and N. Haneklaus, Diffusion bonding and transient liquid phase (TLP) bonding of type 304 and 316 austenitic stainless steel – a review of similar and dissimilar material joints. Metals 10 (2020), pp. 1–23. doi:10.3390/met10050613.
  • R. Bakhtiari, A.Y. Shamsabadi, and K.A. Moradi, Shear strength/microstructure relationship for dissimilar IN738/IN718 TLP joints. Weld. World 64 (2020), pp. 219–231. doi:10.1007/s40194-019-00808-y.
  • M.L. Shalz, B.J. Dalgleish, A.P. Tomsia, and A.M. Glaeser, Ceramic joining – part I partial transient liquid-phase bonding of alumina via Cu/Pt interlayers. J. Mater. Sci 28 (1993), pp. 1673–1684. doi:10.1007/BF00363367.
  • Y. Zhai, T.H. North, and J. Serrato-Rodrigues, Transient liquid-phase bonding of alumina and metal matrix composite base materials. J. Mater. Sci 32 (1997), pp. 1393–1397. doi:10.1023/A:1018529228375.
  • K. Hauschildt, A. Stark, N. Schell, M. Müller, and F. Pyczak, The transient liquid phase bonding process of a γ-TiAl alloy with brazing solders containing Fe or Ni. Intermetallics 106 (2019), pp. 48–58. doi:10.1016/j.intermet.2018.12.004.
  • A.T. Egbewande, C. Chukwukaeme, and O.A. Ojo, Joining of superalloy Inconel 600 by diffusion induced isothermal solidification of a liquated insert metal. Mater. Charact 59 (2008), pp. 1051–1058. doi:10.1016/j.matchar.2007.08.023.
  • M. Pouranvari, A. Ekrami, and A.H. Kokabi, Effect of bonding temperature on microstructure development during TLP bonding of a nickel base superalloy. J. Alloys Compd 469 (2009), pp. 270–175. doi:10.1016/j.jallcom.2008.01.101.
  • F. Arhami, S.E. Mirsalehi, and A. Sadeghian, Effect of bonding time on microstructure and mechanical properties of diffusion brazed IN-939. J. Mater. Process. Technol 265 (2019), pp. 219–229. doi:10.1016/j.jmatprotec.2018.10.021.
  • W.F. Gale and D.A. Butts, Transient liquid phase bonding. Sci. Technol. Weld. Join 9 (2004), pp. 283–300. doi:10.1179/136217104225021724.
  • H. Chen, J.M. Gong, and S.T. Tu, Numerical modelling and experimental investigation of diffusion brazing SS304/BNi2/SS304 joint. Sci. Technol. Weld. Join 14 (2009), pp. 32–41. doi:10.1179/136217108X357583.
  • H. Kejanli, M. Taşkin, S. Kolukisa, and P. Topuz, Transient liquid phase (tlp) diffusion bonding of Ti45Ni 49Cu6 P/M components using Cu interlayer. Int. J. Adv. Manuf. Technol 44 (2009), pp. 695–699. doi:10.1007/s00170-008-1860-3.
  • G.O. Cook and C.D. Sorensen, Overview of transient liquid phase and partial transient liquid phase bonding. J. Mater. Sci 46 (2011), pp. 5305–5323. doi:10.1007/s10853-011-5561-1.
  • Y. Zhou, W.F. Gale, and T.H. North, Modelling of transient liquid phase bonding. Int. Mater. Rev 40 (1995), pp. 181–196. doi:10.1179/imr.1995.40.5.181.
  • A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, and K. Nakashima, Influence of bonding time on the transient liquid phase bonding behavior of Hastelloy X using Ni-Cr-B-Si-Fe filler alloy. Mater. Sci. Eng. A 755 (2019), pp. 37–49. doi:10.1016/j.msea.2019.03.124.
  • M. Pouranvari, A. Ekrami, and A.H. Kokabi, TLP bonding of cast IN718 nickel based superalloy: process–microstructure–strength characteristics. Mater. Sci. Eng. A 568 (2013), pp. 76–82. doi:10.1016/j.msea.2013.01.029.
  • A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito, and K. Nakashima, Effect of bonding temperature on the microstructure and mechanical properties of Hastelloy X superalloy joints bonded with a Ni–Cr–B–Si–Fe interlayer. J. Manuf. Process 47 (2019), pp. 129–140. doi:10.1016/j.jmapro.2019.09.030.
  • O.A. Ojo, N.L. Richards, and M.C. Charturvedi, Effect of gap size and process parameters on diffusion brazing of Inconel 738. Sci. Technol. Weld. Join 9 (2004), pp. 209–220. doi:10.1179/136217104225012175.
  • O.A. Idowu, N.L. Richards, and M.C. Chaturvedi, Effect of bonding temperature on isothermal solidification rate during transient liquid phase bonding of Inconel 738LC superalloy. Mater. Sci. Eng. A 397 (2005), pp. 98–112. doi:10.1016/j.msea.2005.01.055.
  • B. Binesh and A. Jazayeri Gharehbagh, Transient liquid phase bonding of IN738LC/MBF-15/IN738LC: solidification behavior and mechanical properties. J. Mater. Sci. Technol 32 (2016), pp. 1137–1151. doi:10.1016/j.jmst.2016.07.017.
  • B. Binesh, Diffusion brazing of IN718/AISI 316L dissimilar joint: microstructure evolution and mechanical properties. J. Manuf. Process 57 (2020), pp. 196–208. doi:10.1016/j.jmapro.2020.06.025.
  • A. Ghoneim and O.A. Ojo, Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy. Mater. Charact 62 (2011), pp. 1–7. doi:10.1016/j.matchar.2010.09.011.
  • E. Baharzadeh, M. Shamanian, M. Rafiei, and H. Mostaan, Properties of IN X-750/BNi-2/SAF 2205 joints formed by transient liquid phase bonding. J. Mater. Process. Technol 274 (2019), pp. 116297. doi:10.1016/j.jmatprotec.2019.116297.
  • W.F. Gale and E.R. Wallach, Microstructural development in transient liquid-phase bonding. Metall. Trans. A 22 (1991), pp. 2451–2247. doi:10.1007/BF02665011.
  • H. Okamoto, M.F. Schlesinger, and E.M. Mueller, eds. Alloy Phase Diagrams, ASM International, Ohio, 2016. https://doi.org/10.31399/asm.hb.v03.9781627081634.
  • O.C. Afolabi and O.A. Ojo, Analysis of temperature effect on isothermal solidification completion time during transient liquid phase bonding. Philos. Mag 101 (2021), pp. 1081–1096. doi:10.1080/14786435.2021.1880655.
  • M. Pouranvari, A. Ekrami, and A.H. Kokabi, Diffusion induced isothermal solidification during transient liquid phase bonding of cast IN718 superalloy. Can. Metall. Q 53 (2014), pp. 38–46. doi:10.1179/1879139513Y.0000000076.
  • D.M. Turriff and S.F. Corbin, Quantitative thermal analysis of transient liquid-phase-sintered Cu-Ni powders. Metall. Mater. Trans. A 39 (2008), pp. 28–38. doi:10.1007/s11661-007-9388-y.
  • M.J. Cieslak, T.J. Headley, G.A. Knorovsky, A.D. Romig, and T. Kollie, A comparison of the solidification behavior of INCOLOY 909 and INCONEL 718. Metall. Trans. A 21 (1990), pp. 479–488. doi:10.1007/BF02782428.
  • A. Davoodi Jamaloei, A. Khorram, and A. Jafari, Characterization of microstructure and mechanical properties of dissimilar TLP bonding between IN718/IN600 with BNi-2 interlayer. J. Manuf. Process 29 (2017), pp. 447–457. doi:10.1016/j.jmapro.2017.09.010.
  • A.Y. Shamsabadi, R. Bakhtiari, and B.G. Eisaabadi, TLP bonding of IN738/MBF20/IN718 system. J. Alloys Compd 685 (2016), pp. 896–904. doi:10.1016/j.jallcom.2016.06.185.
  • J.K. Kim, H.J. Park, D.N. Shim, and D.J. Kim, Effect of bonding parameters on microstructural characteristics during TLP bonding of directionally solidified Ni-based superalloy. J. Manuf. Process 30 (2017), pp. 208–216. doi:10.1016/j.jmapro.2017.09.024.
  • A. Sadeghian, F. Arhami, and S.E. Mirsalehi, Phase formation during dissimilar transient liquid phase (TLP) bonding of IN939 to IN625 using a Ni-Cr-Fe-Si-B interlayer. J. Manuf. Process 44 (2019), pp. 72–80. doi:10.1016/j.jmapro.2019.05.027.
  • O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi, Microstructural study of transient liquid phase bonded cast INCONEL 738LC superalloy. Metall. Mater. Trans. A 37 (2006), pp. 2787–2796. doi:10.1007/BF02586111.
  • D. Amiri, S.A. Sajjadi, R. Bakhtiari, and A. Kamyabi-Gol, The role of TLP process variables in improvement of microstructure and mechanical properties in TLP joints of GTD-111/Ni-Cr-Fe-B-Si/GTD-111 system. J. Manuf. Process 32 (2018), pp. 644–655. doi:10.1016/j.jmapro.2018.03.036.
  • M. Salmaliyan and M. Shamanian, Formation mechanism of intermetallic components during dissimilar diffusion bonding of IN718/BNi-2/AISI 316 L by TLP process. Heat Mass. Transf 55 (2019), pp. 2083–2093. doi:10.1007/s00231-018-2528-7.
  • L.X. Zhang, Q. Chang, Z. Sun, Q. Xue, and J.C. Feng, Effects of boron and silicon on microstructural evolution and mechanical properties of transient liquid phase bonded GH3039/ IC10 joints. J. Manuf. Process 38 (2019), pp. 167–173. doi:10.1016/j.jmapro.2019.01.016.
  • O. Teppa and P. Taskinen, Thermodynamic assessment of Ni–B phase diagram. Mater. Sci. Technol 9 (1993), pp. 205–212. doi:10.1179/mst.1993.9.3.205.
  • T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, Binary Alloy Phase Diagrams, American Society for Metals, Ohio, 1986.
  • M. Emami, M. Askari-Paykani, E. Farabi, H. Beladi, and H.R. Shahverdi, Development of new third-generation medium manganese advanced high-strength steels elaborating hot-rolling and intercritical annealing. Metall. Mater. Trans. A 50 (2019), pp. 4261–4274. doi:10.1007/s11661-019-05352-4.
  • C.Z. Hargather, S.-L. Shang, and Z.-K. Liu, Data set for diffusion coefficients and relative creep rate ratios of 26 dilute Ni-X alloy systems from first-principles calculations. Data Br 20 (2018), pp. 1537–1551. doi:10.1016/j.dib.2018.08.144.
  • W. Batz, H.W. Mead, and C.E. Birchenall, Diffusion of silicon in iron. JOM 4 (1952), pp. 1070. doi:10.1007/BF03397772.
  • W. Wang, S. Zhang, and X. He, Diffusion of boron in alloys. Acta Metall. Mater 43 (1995), pp. 1693–1699. doi:10.1016/0956-7151(94)00347-K.
  • X. Zhang, X. Li, P. Wu, S. Chen, S. Zhang, N. Chen, and X. Huai, First principles calculation of boron diffusion in fcc-Fe. Curr. Appl. Phys 18 (2018), pp. 1108–1112. doi:10.1016/j.cap.2018.06.009.
  • C.W. Sinclair, G.R. Purdy, and J.E. Morral, Transient liquid-phase bonding in two-phase ternary systems. Metall. Mater. Trans. A 31 (2000), pp. 1187–1192. doi:10.1007/s11661-000-0114-2.
  • W.D. MacDonald and T.W. Eagar, Transient liquid phase bonding. Annu. Rev. Mater. Sci 22 (1992), pp. 23–46. doi:10.1146/annurev.ms.22.080192.000323.
  • C.W. Sinclair, Modeling transient liquid phase bonding in multicomponent systems. J. Phase Equilibria 20 (1999), pp. 361–369. doi:10.1361/105497199770340888.
  • Y. Zhou, Analytical modeling of isothermal solidification during transient liquid phase (TLP) bonding. J. Mater. Sci. Lett 20 (2001), pp. 841–844.
  • O.A. Ojo, N.L. Richards, and M.C. Chaturvedi, Isothermal solidification during transient liquid phase bonding of Inconel 738 superalloy. Sci. Technol. Weld. Join 532 (2004), pp. 532–540. doi:10.1179/174329304X8702.
  • X. Yuan, M.B. Kim, and C.Y. Kang, Microstructural evolution and bonding behavior during transient liquid-phase bonding of a duplex stainless steel using two different Ni-B-based filler materials. Metall. Mater. Trans. A 42 (2011), pp. 1310–1324. doi:10.1007/s11661-010-0534-6.
  • A. Ghoneim and O.A. Ojo, Numerical modeling and simulation of a diffusion-controlled liquid–solid phase change in polycrystalline solids. Comput. Mater. Sci 50 (2011), pp. 1102–1113. doi:10.1016/j.commatsci.2010.11.008.
  • M.L. Kuntz, Y. Zhou, and S.F. Corbin, A study of transient liquid-phase bonding of Ag-Cu using differential scanning calorimetry. Metall. Mater. Trans. A 37 (2006), pp. 2493–2504. doi:10.1007/BF02586222.
  • I. Tuah-Poku, M. Dollar, and T.B. Massalski, A study of the transient liquid phase bonding process applied to a Ag/Cu/Ag sandwich joint. Metall. Trans. A 19 (1988), pp. 675–686. doi:10.1007/BF02649282.
  • D.C. Murray and S.F. Corbin, Determining the kinetics of transient liquid phase bonding (TLPB) of inconel 625/BNi-2 couples using differential scanning calorimetry. J. Mater. Process. Technol 248 (2017), pp. 92–102. doi:10.1016/j.jmatprotec.2017.05.013.
  • S. Mirzaei and B. Binesh, Microstructure evolution mechanism and corrosion behavior of transient liquid phase bonded 304L stainless steel. Met. Mater. Int. (2020). doi:10.1007/s12540-020-00671-3.
  • ASM handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol. 2, ASM International, Ohio, 1992.
  • J.R. Davis, ASM Specialty Handbook: Stainless Steels, ASM International, Ohio, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.