226
Views
1
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Stability of polarisation vortex in ferroelectric nanofilm under stress or curled electric field

, , &
Pages 1965-1984 | Received 19 Jan 2021, Accepted 09 Jun 2021, Published online: 22 Jun 2021

References

  • S.E. Park and T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82 (1997), pp. 1804–1811.
  • A.A. Bokov and Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41 (2006), pp. 31–52.
  • S. Prosandeev, I. Ponomareva, I. Naumov, I. Kornev and L. Bellaiche, Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys. Condens. Matter 20 (2008), pp. 193201.
  • N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Tagantsev, D.V. Taylor, T. Yamada and S. Streiffer, Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100 (2006), pp. 051606.
  • B. Li, J.B. Wang, X.L. Zhong, F. Wang, Y.K. Zeng and Y.C. Zhou, Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC Adv. 3 (2013), pp. 7928–7932.
  • A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore and N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311 (2006), pp. 1270–1271.
  • P.F. Liu, J.L. Wang, X.J. Meng, J. Yang, B. Dkhil and J.H. Chu, Huge electrocaloric effect in langmuir-blodgett ferroelectric polymer thin films. New J. Phys. 12 (2010), pp. 023035.
  • T.M. Correia, S. Kar-Narayan, J.S. Young, J.F. Scott, N.D. Mathur, R.W. Whatmore and Q. Zhang, PST thin films for electrocaloric coolers. J. Phys. D-Appl. Phys. 44 (2011), pp. 165407.
  • C. Ye, J.B. Wang, B. Li and X.L. Zhong, Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure. Sci. Rep. 8 (2018), pp. 293.
  • T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin and S.W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324 (2009), pp. 63–66.
  • Z.G. Xiao, Y.B. Yuan, Y.C. Shao, Q. Wang, Q.F. Dong, C. Bi, P. Sharma, A. Gruverman and J.S. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14 (2015), pp. 193–198.
  • R.E. Jones, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii, P. Chu and S.J. Gillespie, Ferroelectric non-volatile memories for low-voltage, low-power applications. Thin Solid Films 270 (1995), pp. 584–588.
  • Y.S. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe and K. Kitamura, Tbit/inch(2) ferroelectric data storage based on scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 81 (2002), pp. 4401–4403.
  • H. Zhao, P.P. Wu, L.F. Du and H.L. Du, Effect of the nanopore on ferroelectric domain structures and switching properties. Comput. Mater. Sci. 148 (2018), pp. 216–223.
  • Y. Li, Y.M. Jin, X.M. Lu, J.C. Yang, Y.H. Chu, F.Z. Huang, J.S. Zhu and S.W. Cheong, Rewritable ferroelectric vortex pairs in BiFeO3. Npj Quantum Mater. 2 (2017), pp. 1–6.
  • I. Naumov, L. Bellaiche and H.X. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432 (2004), pp. 737–740.
  • B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse and M. Alexe, Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9 (2009), pp. 1127–1131.
  • Z.W. Li, Y.J. Wang, G. Tian, P.L. Li, L.N. Zhao, F.Y. Zhang, J.X. Yao, H. Fan, X. Song, D.Y. Chen, Z. Fan, M.H. Qin, M. Zeng, Z. Zhang, X.B. Lu, S.J. Hu, C.H. Lei, Q.F. Zhu, J.Y. Li, X.S. Gao and J.M. Liu, High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3 (2017), pp. e1700919.
  • Y. Ivry, D.P. Chu, J.F. Scott and C. Durkan, Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 104 (2010), pp. 207602.
  • A.K. Yadav, C.T. Nelson, S.L. Hsu, Z. Hong, J.D. Clarkson, C.M. Schlepuetz, A.R. Damodaran, P. Shafer, E. Arenholz, L.R. Dedon, D. Chen, A. Vishwanath, A.M. Minor, L.Q. Chen, J.F. Scott, L.W. Martin and R. Ramesh, Observation of polar vortices in oxide superlattices. Nature 530 (2016), pp. 198.
  • X.B. Tian, X.H. Yang, P. Wang and D. Peng, Motion, collision and annihilation of polarization vortex pair in single crystalline BaTiO3 thin film. Appl. Phys. Lett. 103 (2013), pp. 242905.
  • X.B. Tian, X.H. Yang and W.Z. Cao, Atomistic simulation of strain-induced domain evolution in a uniaxially compressed BaTiO3 single-crystal nanofilm. J. Electron. Mater. 42 (2013), pp. 2504–2509.
  • S.L. Hsu, M.R. McCarter, C. Dai, Z.J. Hong, L.Q. Chen, C.T. Nelson, L.W. Martin and R. Ramesh, Emergence of the vortex state in confined ferroelectric heterostructures. Adv. Mater. 31 (2019), pp. 1901014.
  • P.P. Wu, X.Q. Ma, J.X. Zhang and L.Q. Chen, Phase-field model of multiferroic composites: domain structures of ferroelectric particles embedded in a ferromagnetic matrix. Philos. Mag. 90 (2010), pp. 125–140.
  • Y.L. Tang, Y.L. Zhu, X.L. Ma, A.Y. Borisevich, A.N. Morozovska, E.A. Eliseev, W.Y. Wang, Y.J. Wang, Y.B. Xu, Z.D. Zhang and S.J. Pennycook, Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348 (2015), pp. 547–551.
  • X.B. Tian, X.Q. He and J. Lu, Atomic scale study of the anti-vortex domain structure in polycrystalline ferroelectric. Philos. Mag. 98 (2018), pp. 118–138.
  • L.J. McGilly and J.M. Gregg, Polarization closure in PbZr(0.42)Ti(0.58)O3 nanodots. Nano Lett. 11 (2011), pp. 4490–4495.
  • N. Balke, B. Winchester, W. Ren, Y.H. Chu, A.N. Morozovska, E.A. Eliseev, M. Huijben, R.K. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.Q. Chen and S.V. Kalinin, Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8 (2012), pp. 81–88.
  • J.J. Wang, B. Wang, and L.Q. Chen, Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method, in Annual Review of Materials Research, Vol 49, D. R. Clarke ed., Annual Reviews, Palo Alto, 2019, pp. 127–152.
  • J. Wang, Switching mechanism of polarization vortex in single-crystal ferroelectric nanodots. Appl. Phys. Lett. 97 (2010), pp. 192901.
  • W.J. Chen, Y. Zheng and B. Wang, Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci. Rep. 2 (2012), pp. 796.
  • W.J. Chen and Y. Zheng, Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: effects of substrate, dislocations and local clamping force. Acta Mater. 88 (2015), pp. 41–54.
  • A.N. Morozovska, E.A. Eliseev, R. Hertel, Y.M. Fomichov, V. Tulaidan, V.Y. Reshetnyak and D.R. Evans, Electric field control of three-dimensional vortex states in core-shell ferroelectric nanoparticles. Acta Mater. 200 (2020), pp. 256–273.
  • D.P. Zhu, J. Mangeri, R.L. Wang and S. Nakhmanson, Size, shape, and orientation dependence of the field-induced behavior in ferroelectric nanoparticles. J. Appl. Phys. 125 (2019), pp. 134102.
  • W.J. Chen, Y. Zheng, B. Wang and J.Y. Liu, Coexistence of toroidal and polar domains in ferroelectric systems: A strategy for switching ferroelectric vortex. J. Appl. Phys. 115 (2014), pp. 214106.
  • W.J. Chen, Y. Zheng, B. Wang, D.C. Ma and F.R. Ling, Vortex domain structures of an epitaxial ferroelectric nanodot and its temperature-misfit strain phase diagram. Phys. Chem. Chem. Phys. 15 (2013), pp. 7277–7285.
  • Y.L. Li and L.Q. Chen, Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 88 (2006), pp. 072905.
  • W.L. Shu, J. Wang and T.Y. Zhang, Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J. Appl. Phys. 112 (2012), pp. 064108.
  • Y.L. Wang, A.K. Tagantsev, D. Damjanovic, N. Setter, V.K. Yarmarkin and A.I. Sokolov, Anharmonicity of BaTiO3 single crystals. Phys. Rev. B 73 (2006), pp. 132103.
  • J. Hlinka and P. Marton, Phenomenological model of a 90 degrees domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 74 (2006), pp. 104104.
  • I. Naumov and A.M. Bratkovsky, Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101 (2008), pp. 107601.
  • C.H. Woo and Y. Zheng, Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A Mater. Sci. Process. 91 (2008), pp. 59–63.
  • J. Wang and M. Kamlah, Domain structures of ferroelectric nanotubes controlled by surface charge compensation. Appl. Phys. Lett. 93 (2008), pp. 042906.
  • Y. Zheng and C.H. Woo, Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale. Appl. Phys. A Mater. Sci. Process. 97 (2009), pp. 617–626.
  • A.K. Tagantsev, Landau expansion for ferroelectrics: which variable to Use? Ferroelectrics 375 (2008), pp. 19–27.
  • J.J. Wang, X.Q. Ma, Q. Li, J. Britson and L.Q. Chen, Phase transitions and domain structures of ferroelectric nanoparticles: phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater. 61 (2013), pp. 7591–7603.
  • S. Yuan, W.J. Chen, L.L. Ma, Y. Ji, W.M. Xiong, J.Y. Liu, Y.L. Liu, B. Wang and Y. Zheng, Defect-mediated vortex multiplication and annihilation in ferroelectrics and the feasibility of vortex switching by stress. Acta Mater. 148 (2018), pp. 330–343.
  • L. Lahoche, I. Luk'yanchuk and G. Pascoli, Stability of vortex phases in ferroelectric easy-plane nano-cylinders. Integr. Ferroelectr. 99 (2008), pp. 60–66.
  • Y. Su and J.N. Du, Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles. Appl. Phys. Lett. 95 (2009), pp. 012903.
  • L.V. Lich, T. Shimada, J. Wang, V.H. Dinh, T.Q. Bui and T. Kitamura, Switching the chirality of a ferroelectric vortex in designed nanostructures by a homogeneous electric field. Phys. Rev. B 96 (2017), pp. 134119.
  • J.Y. Liu, W.J. Chen, B. Wang and Y. Zheng, The formation and phase transition of vortex domain structures in ferroelectric nanodots: first-principles-based simulations. J. Appl. Phys. 114 (2013), pp. 044101.
  • W.K. Jiang, X.H. Yang and D. Peng, Intensity characterisation of polarisation vortex formation and evolution in ferroelectric nanofilms. Philos. Mag. 101 (2021), pp. 673–688.
  • W.J. Chen, Y. Zheng and B. Wang, Phase field simulations of stress controlling the vortex domain structures in ferroelectric nanosheets. Appl. Phys. Lett. 100 (2012), pp. 062901.
  • C. Liu, J. Wang, G. Xu, M. Kamlah and T.Y. Zhang, An isogeometric approach to flexoelectric effect in ferroelectric materials. Int. J. Solids Struct. 162 (2019), pp. 198–210.
  • L.V. Lich, T.Q. Bui, T. Shimada, T. Kitamura, T.G. Nguyen and V.H. Dinh, Deterministic switching of polarization vortices in compositionally graded ferroelectrics using a mechanical field. Phys. Rev. Appl. 11 (2019), pp. 054001.
  • B. Winchester, N. Balke, X.X. Cheng, A.N. Morozovska, S. Kalinin and L.Q. Chen, Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 107 (2015), pp. 052903.
  • Y.C. Song, Y. Ni and J.Q. Zhang, Phase field model of polarization evolution in a finite ferroelectric body with free surfaces. Acta Mech. 224 (2013), pp. 1309–1313.
  • W.J. Chen, J.Y. Liu, L.L. Ma, L.J. Liu, G.L. Jiang and Y. Zheng, Mechanical switching of ferroelectric domains beyond flexoelectricity. J. Mech. Phys. Solids 111 (2018), pp. 43–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.