963
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A micropolar continuum model of diffusion creep

ORCID Icon
Pages 1913-1941 | Received 26 Mar 2021, Accepted 09 Jun 2021, Published online: 30 Jun 2021

References

  • R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys. 34 (1963), pp. 1679–1682.
  • F.R.N. Nabarro, Deformation of crystals by the motion of single ions, in Rep. a Conf. Strength Solids. Physical Society, London, 1948, pp. 75–90.
  • C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys. 21 (1950), pp. 437–445.
  • I.M. Lifshitz, On the theory of diffusion-viscous flow of polycrystalline bodies, Sov. Phys. JETP 17 (1963), pp. 1349–1367.
  • M. Godio, I. Stefanou, K. Sab, J. Sulem, and S. Sakji, A limit analysis approach based on Cosserat continuum for the evaluation of the in-plane strength of discrete media: Application to masonry, Eur. J. Mech. A/Solids 66 (2017), pp. 168–192.
  • P. Trovalusci and R. Masiani, Non-linear micropolar and classical continua for anisotropic discontinous materials, Int. J. Solids Struct. 40 (2003), pp. 1281–1297.
  • I. Vardoulakis, Cosserat Continuum Mechanics, Lecture Notes in Applied and Computational Mechanics, Vol. 87, Springer International Publishing, Cham, 2019.
  • R.J. Twiss, B.J. Souter, and J.R. Unruh, The effect of block rotations on the global seismic moment tensor and the patterns of seismic P and T axes, J. Geophys. Res. Solid Earth 98 (1993), pp. 645–674.
  • R.J. Twiss, An asymmetric micropolar moment tensor derived from a discrete-block model for a rotating granular substructure, Bull. Seismol. Soc. Am. 99 (2009), pp. 1103–1131.
  • R. Abreu, J. Kamm, and A.S. Reiß, Micropolar modelling of rotational waves in seismology, Geophys. J. Int. 210 (2017), pp. 1021–1046.
  • R. Abreu, C. Thomas, and S. Durand, Effect of observed micropolar motions on wave propagation in deep Earth minerals, Phys. Earth Planet. Inter. 276 (2018), pp. 215–225.
  • P. Cordier, S. Demouchy, B. Beausir, V. Taupin, F. Barou, and C. Fressengeas, Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle, Nature 507 (2014), pp. 51–56.
  • J. Wheeler, Anisotropic rheology during grain boundary diffusion creep and its relation to grain rotation, grain boundary sliding and superplasticity, Philos. Mag. 90 (2010), pp. 2841–2864.
  • A.C. Eringen, Theory of Micropolar Fluids, J. Math. Mech. 16 (1966), pp. 1–18.
  • V.A. Eremeyev, L.P. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, SpringerBriefs in Applied Sciences and Technology, Springer, Berlin, Heidelberg, 2013.
  • I. Stefanou, J. Sulem, and H. Rattez, Cosserat Approach to Localization in Geomaterials, Handb. Nonlocal Contin. Mech. Mater. Struct., Springer International Publishing, 2017, pp. 1–25.
  • G. Łukaszewicz, Micropolar Fluids, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Boston, MA, 1999.
  • N. Charalambakis, Homogenization techniques and micromechanics. A survey and perspectives, Appl. Mech. Rev. 63 (2010), pp. 1–10.
  • J.F. Rudge, The viscosities of partially molten materials undergoing diffusion creep, J. Geophys. Res. Solid Earth 123 (2018), pp. 10, 534–10, 562.
  • J.R. Spingarn and W.D. Nix, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metall. 26 (1978), pp. 1389–1398.
  • A.C.F. Cocks and A.A. Searle, Cavity growth in ceramic materials under multiaxial stress states, Acta Metall. Mater. 38 (1990), pp. 2493–2505.
  • P.M. Hazzledine and J.H. Schneibel, Theory of coble creep for irregular grain structures, Acta Metall. Mater. 41 (1993), pp. 1253–1262.
  • H. Weber, H. Balke, and W. Pompe, High temperature creep of polycrystals with randomly oriented grain boundaries, Comput. Mater. Sci. 5 (1996), pp. 238–242.
  • J.M. Ford, J. Wheeler, and A.B. Movchan, Computer simulation of grain-boundary diffusion creep, Acta Mater. 50 (2002), pp. 3941–3955.
  • R. Quey and L. Renversade, Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data, Comput. Methods Appl. Mech. Eng.330 (2018), pp. 308–333.
  • C. Lautensack and S. Zuyev, Random Laguerre tessellations, Adv. Appl. Probab. 40 (2008), pp. 630–650.
  • W. Beere, Stresses and deformation at grain boundaries, Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 288 (1978), pp. 177–196.
  • D. Moldovan, D. Wolf, and S.R. Phillpot, Theory of diffusion-accommodated grain rotation in columnar polycrystalline microstructures, Acta Mater. 49 (2001), pp. 3521–3532.
  • K. Harris, V. Singh, and A. King, Grain rotation in thin films of gold, Acta Mater. 46 (1998), pp. 2623–2633.
  • B.N. Kim, K. Hiraga, and K. Morita, Viscous grain-boundary sliding and grain rotation accommodated by grain-boundary diffusion, Acta Mater. 53 (2005), pp. 1791–1798.
  • Y. Takei and B.K. Holtzman, Viscous constitutive relations of solid–liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model, J. Geophys. Res. Solid Earth114 (2009), pp. 1–19.
  • N. Fantuzzi, P. Trovalusci, and R. Luciano, Material symmetries in homogenized hexagonal-shaped composites as Cosserat Continua, Symmetry (Basel). 12 (2020), pp. 441.
  • B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, and B.W. Ahn, Viscous grain-boundary sliding with rotating particles or grains, Acta Mater. 57 (2009), pp. 5730–5738.
  • E.F. Grekova, M.A. Kulesh, and G.C. Herman, Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model, Bull. Seismol. Soc. Am. 99 (2009), pp. 1423–1428.
  • E.F. Grekova and R. Abreu, Isotropic Linear Viscoelastic Reduced Cosserat Medium: An Acoustic Metamaterial and a First Step to Model Geomedium, Adv. Struct. Mater., Vol. 108, Springer Verlag, Switzerland, 2019, pp. 165–185.
  • M.D. Graham, Microhydrodynamics, Brownian, Motion and Complex Fluids, Cambridge University Press, Cambridge, UK, 2018.
  • É. Guazzelli and J.F. Morris, A Physical Introduction to Suspension Dynamics, Cambridge University Press, Cambridge, UK, Jan 2011.