133
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Tuning the thermal conductivity of wurtzite CdSe nanowires: effects of size, strain, torsion and temperature

, &
Pages 2077-2091 | Received 20 Jul 2020, Accepted 27 Jun 2021, Published online: 12 Jul 2021

References

  • Y. Zhang, T. Mori, J. Ye, and M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132 (2010), pp. 6294–6295.
  • Y. Cui, X. Duan, J. Hu, and C.M. Lieber, Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104 (2000), pp. 5213–5216.
  • K.K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y.H. Lee, and J. Kong, Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21 (2010), pp. 285205.
  • W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96 (2006), pp. 045901.
  • M. Hu and D. Poulikakos, Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12 (2012), pp. 5487–5494.
  • M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19 (2007), pp. 1043–1053.
  • E. Rogacheva, T. Tavrina, S. Grigorov, O. Nashchekina, V. Volobuev, A. Fedorov, K. Nasedkin, and M. Dresselhaus, Effect of oxidation on the thermoelectric properties of PbSe thin films. J. Electron. Mater. 31 (2002), pp. 298–303.
  • F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, and N.V. Myung, Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta 53 (2008), pp. 8103–8117.
  • I.D. Noyan, G. Gadea, M. Salleras, M. Pacios, C. Calaza, A. Stranz, M. Dolcet, A. Morata, A. Tarancon, and L. Fonseca, Sige nanowire arrays based thermoelectric microgenerator. Nano Energy 57 (2019), pp. 492–499.
  • T. Harman, P. Taylor, M. Walsh, and B. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297 (2002), pp. 2229–2232.
  • T. Harman, P. Taylor, D. Spears, and M. Walsh, Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 29 (2000), pp. L1–L2.
  • A. Myalitsin, C. Strelow, Z. Wang, Z. Li, T. Kipp, and A. Mews, Diameter scaling of the optical band gap in individual CdSe nanowires. ACS Nano 5 (2011), pp. 7920–7927.
  • E. Deligoz, K. Colakoglu, and Y. Ciftci, Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Phys. B 373 (2006), pp. 124–130.
  • Q. Zhao, P.A. Graf, W.B. Jones, A. Franceschetti, J. Li, L.-W. Wang, and K. Kim, Shape dependence of band-edge exciton fine structure in CdSe nanocrystals. Nano Lett. 7 (2007), pp. 3274–3280.
  • M. Klein, F. Hache, D. Ricard, and C. Flytzanis, Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe. Phys. Rev. B 42 (1990), pp. 11123–11132.
  • M. Cao, H. Lian, and C. Hu, Ligand-assisted fabrication of hollow CdSe nanospheres via Ostwald ripening and their microwave absorption properties. Nanoscale. 2 (2010), pp. 2619–2623.
  • N. Mingo, Thermoelectric figure of merit of II–VI semiconductor nanowires. Appl. Phys. Lett. 85 (2004), pp. 5986–5988.
  • A. Kulkarni and M. Zhou, Tunable thermal response of ZnO nanowires. Nanotechnology 18 (2007), pp. 435706.
  • Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.T. Lee, Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small 5 (2009), pp. 345–350.
  • J. Yang, H. Tang, Y. Zhao, Y. Zhang, J. Li, Z. Ni, Y. Chen, and D. Xu, Thermal conductivity of zinc blende and wurtzite CdSe nanostructures. Nanoscale. 7 (2015), pp. 16071–16078.
  • X. Zhou, D. Ward, J. Martin, F. Van Swol, J. Cruz-Campa, and D. Zubia, Stillinger-weber potential for the II-VI elements zn-cd-hg-S-se-te. Phys. Rev. B 88 (2013), pp. 085309.
  • F. van Swol, X.W. Zhou, S.R. Challa, and J.E. Martin, Thermodynamic properties of model CdTe/CdSe mixtures. Mol. Simul. 42 (2016), pp. 14–24.
  • A.M. Kelley, Comparison of three empirical force fields for phonon calculations in CdSe quantum dots. J. Chem. Phys. 144 (2016), pp. 214702.
  • R.B. Lehoucq, S.A. Silling, S.J. Plimpton, and M.L. Parks, Peridynamics with LAMMPS: a user guide. Citeseer (2008).
  • M. Zhang, E. Lussetti, L.E. de Souza, and F. Müller-Plathe, Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. J. Phys. Chem. B 109 (2005), pp. 15060–15067.
  • S.-c. Wang, X.-g. Liang, X.-h. Xu, and T. Ohara, Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations. J. Appl. Phys. 105 (2009), pp. 014316.
  • C.W. Zhang, H. Zhou, Y. Zeng, L. Zheng, Y.L. Zhan, and K.D. Bi, A reduction of thermal conductivity of non-periodic Si/Ge superlattice nanowire: molecular dynamics simulation. Int. J. Heat Mass Transfer 132 (2019), pp. 681–688.
  • J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors. Science 287 (2000), pp. 622–625.
  • A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic circuits with carbon nanotube transistors. Science 294 (2001), pp. 1317–1320.
  • P.K. Schelling, S.R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65 (2002), pp. 144306.
  • J.C. Childers, The chemistry of metalworking fluids. Manuf. Eng. Mater. Process. 71 (2006), pp. 127.
  • S.L. Sauter, L.R. Murphy and J.J. Hurrell, Prevention of work-related psychological disorders: A national strategy proposed by the National Institute for Occupational Safety and Health (NIOSH). Am. Psychologist 45 (1990), pp. 1146–1158.
  • D. Frenkel and M. Ernst, Simulation of diffusion in a two-dimensional lattice-gas cellular automaton: a test of mode-coupling theory. Phys. Rev. Lett. 63 (1989), pp. 2165–2168.
  • M. Van der Hoef and D. Frenkel, Long-time tails of the velocity autocorrelation function in two-and three-dimensional lattice-gas cellular automata: A test of mode-coupling theory. Phys. Rev. A 41 (1990), pp. 4277–4284.
  • G. Grest, S. Nagel, A. Rahman, and T. Witten Jr, Density of states and the velocity autocorrelation function derived from quench studies. J. Chem. Phys. 74 (1981), pp. 3532–3534.
  • X. Li, K. Maute, M.L. Dunn, and R. Yang, Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81 (2010), pp. 245318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.