622
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A dislocation-dipole in one-dimensional lattice model

Pages 2216-2259 | Received 15 Aug 2020, Accepted 28 Jul 2021, Published online: 22 Aug 2021

References

  • U. Dehlinger, Zur Theorie der Rekristallisation reiner Metalle, Ann. Phys. 394(7) (1929), pp. 749–793.
  • F.C. Frank and W.T. Read, Multiplication processes for slow moving dislocations, Phys. Rev. 79(4) (1950), pp. 722–723.
  • F.R.N. Nabarro, The mathematical theory of stationary dislocations, Adv. Phys.1(3) (1952), pp. 269–394.
  • F.R.N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc. Lond. 59(332) (1947), pp. 256–272.
  • R.E. Peierls, The size of a dislocation, Proc. Phys. Soc. Lond. 52 (1940), pp. 34–37.
  • G. Schoeck, The energy of dislocation dipoles, Philos. Mag. 94(14) (2014), pp. 1542–1551.
  • F. Bormann, K. Mikes, O. Rokos, and R. Peerlings, The Peierls-Nabarro finite element model in two-phase microstructures – a comparison with atomistic, Mech. Mater. 150 (2020), p. 103555.
  • J. Mianroodi, A. Hunter, I. Beyerlein, and B. Svendsen, Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals, J. Mech. Phys. Solids. 95 (2016), pp. 719–741.
  • S. Wang, Dislocation equation from the lattice dynamics, J. Phys. A Math. Theor. 41 (2008), pp. 015005.
  • T. Luo, P. Ming, and Y. Xiang, From atomistic model to the Peierls-Nabarro model with γ-surface for dislocations, Arch. Ration. Mech. Anal. 230 (2018), pp. 735–781.
  • G. Liu, X. Cheng, J. Wang, K. Chen, and Y. Shen, Improvement of nonlocal Peierls-Nabarro models, Comput. Mater. Sci. 131 (2017), pp. 69–77.
  • M. Peach and J.S. Koehler, The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80(3) (1950), pp. 436–439.
  • J.D. Eshelby, The continuum theory of lattice defects, in Solid State Physics, Vol. 3, F. Seitz and D. Turnbull, eds., Academic Press, N.Y., 1956, pp. 79–144.
  • J. Frenkel and T. Kontorova, On the theory of plastic deformation and twinning, Phys. z. Sowjetunion13 (1938), pp. 1–10.
  • S.V. Dmitriev, L.V. Nauman, A.A. Ovcharov, and M.D. Starostenkov, Dislocation nucleation mechanism in a one-dimensional model of a Frenkel-Kontorova crystal, Russian Phys. J. 39(2) (1996), pp. 164–167.
  • S.V. Dmitriev, L.V. Nauman, A.M. Wusatowska-Sarek, and M.D. Starostenkov, Generation and annihilation of dislocations in the discrete Frenkel-Kontorova model, Phys. Status Solidi (b) 89 (1997), pp. 89–96.
  • N. Akhmediev and A. Ankiewicz, Solitons: Non-linear Pulses and Beams, Chapman and Hall, London, 1997.
  • Y.N. Gornostyrev, M.I. Katsnelson, A.V. Kravtsov, and A.V. Trefilov, Kink nucleation in the two-dimensional Frenkel-Kontorova model, Phys. Rev. E. 66(2) (2002), p. 027201.
  • A. Seeger and P. Schiller, Kinks in dislocation lines and their effects on the internal friction in crystals, in Physical Acoustics, Vol. IIIA, W. Mason, ed., Academic, New York, 1966, p. 361.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968.
  • A. Seeger, Solitons and statistical thermodynamics, in Trends in Applications of Pure Mathematics to Mechanics, E. Kröner, K. Kirchgässner, eds., Springer-Verlag, New York, 1986, pp. 114–155.
  • W. Atkinson and N. Cabrera, Motion of a Frenkel-Kontorowa dislocation in a 1-dimensional crystal, Phys. Rev. 138(3A) (1965), pp. A763–766.
  • O. Kresse and L. Truskinovsky, Mobility of lattice defects: discrete and continuum approaches, J. Mech. Phys. Solids. 51(7) (2003), pp. 1305–1332.
  • B.L. Sharma, On energy balance and the structure of radiated waves in kinetics of crystalline defects, J. Mech. Phys. Solids. 96 (2016), pp. 88–120.
  • J.H. Weiner and W.T. Sanders, Peierls stress and creep of linear chain, Phys. Rev. A-Gen. Phys.134(4A) (1964), pp. 1007–1015.
  • T. Dumitrica, T. Belytschko, and B.I. Yakobson, Bond-breaking bifurcation states in carbon nanotube fracture, J. Chem. Phys. 118 (2003), pp. 9485.
  • Y. Kamimura, Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure, Acta. Mater. 61(1) (2013), pp. 294–309.
  • R. Hobart, Peierls stress dependence on dislocation width, J. Appl. Phys.36(6) (1965), pp. 1944–1948.
  • B.L. Sharma, A family of solitary waves in Frenkel-Kontorova lattice, Oct (2019). Available at arXiv: 1910.06904.
  • M. Bixon and R. Zwanzig, Brownian motion of a nonlinear oscillator, J. Stat. Phys. 3 (1971), pp. 245–260.
  • M. Gitterman, The Noisy Oscillator, World Scientific, Singapore, 2005.
  • J.A. Krumhansl and J.R. Schrieffer, Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions, Phys. Rev. B 11 (1975), pp. 3535.
  • T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen, and K.W. Jacobsen, Determination of the of rate cross slip of screw dislocations, Phys. Rev. Lett. 85(18) (2000), p. 3866.
  • V. Celli and N. Flytzanis, Motion of a screw dislocation in a crystal, J. Appl. Phys. 41(11) (1970), pp. 4443–4447.
  • S. Ishioka, Uniform motion of a screw dislocation in a lattice, J. Phys. Soc. Jpn 30(2) (1971), pp. 323–327.
  • A.A. Maradudin, Screw dislocations and discrete elastic theory, J. Phys. Chem. Solids 9(1) (1958), pp. 1–20.
  • W.T. Sanders, Peierls stress for an idealized crystal model, Phys. Rev. 128(4) (1962), pp. 1540–1549.
  • J. Kratochvíl and V.L. Indenbom, The mobility of a dislocation in the Frenkel-Kontorova model, Czechoslov. J. Phys. B 13 (1963), pp. 814–821.
  • H. Levy and F. Lessman, Finite Difference Equations, Dover, New York, 1992.
  • B.L. Sharma, The kinetic relation of a Peierls dislocation in a higher-gradient dispersive continuum, Ph.D dissertation, Cornell University, Oct 2004.
  • B.L. Sharma and A. Vainchtein, Quasistatic evolution of steps along a phase boundary, Contin. Mech. Thermodyn. 19(6) (2007), pp. 347–377.
  • P. Rosakis and A. Vainchtein, New solutions for slow moving kinks in a forced frenkel-Kontorova chain, J. Nonlinear Sci. 23 (2013), pp. 1089–1110.
  • J.L. Ericksen, Equilibrium of bars, J. Elast. 5 (1975), pp. 191–202.
  • L. Truskinovsky and A. Vainchtein, Peierls-Nabarro landscape for martensitic phase transitions, Phys. Rev. B. 67 (2003), pp. 172103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.