164
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Pressure effects on structure, mechanical properties and thermal conductivity of V2SnC: a first-principles study

, , , , , & show all
Pages 228-243 | Received 26 Jun 2021, Accepted 24 Sep 2021, Published online: 15 Oct 2021

References

  • D. Horlait, S. Grasso, A. Chroneos and W.E. Lee, Attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC. Mater. Res. Lett. 4 (2016), pp. 137–144.
  • Y. Zhou and Z. Sun, Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression. J. Eur. Ceram. Soc. 21 (2001), pp. 1007–1011.
  • M.W. Barsoum, M. Ali and T. El-Raghy, Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31 (2000), pp. 1857–1865.
  • P. Eklund, M. Beckers, U. Jansson, H. Högberg and L. Hultman, The Mn+1AXn phases: Materials science and thin-film processing. Thin Sol. Films 518 (2010), pp. 1851–1878.
  • Z.M. Sun, Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 56 (2011), pp. 143–166.
  • V.D. Jovic, B.M. Jovic, S. Gupta, T. El-Raghy and M.W. Barsoum, Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4. Corr. Sci. 48 (2006), pp. 4274–4282.
  • M. Sundberg, G. Malmqvist, A. Magnusson and T. El-Raghy, Alumina forming high temperature silicides and carbides. Ceram. Int. 30 (2004), pp. 1899–1904.
  • M.W. Barsoum, M. Radovic, J. Buschow, M.C. Flemings, E.J. Kramer, S. Mahajan and P. Veyssiere, Encyclopedia of Materials Science and Technology, Elsevier, Amsterdam, 2004.
  • N.I. Medvedeva, A.N. Enyashin and A.L. Ivanovskii, Modeling of the electronic structure, chemical bonding, and properties of ternary silicon carbide Ti3SiC2. J. Struct. Chem. 52 (2011), pp. 785–802.
  • M.W. Barsoum, The MN+1AXN phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28 (2000), pp. 201–281.
  • M. Radovic, M.W. Barsoum, T. El-Raghy, S.M. Wiederhorn and W.E. Luecke, Effect of temperature, strain rate and grain size on the mechanical response of Ti3SiC2 in tension. Acta Mater. 50 (2002), pp. 1297–1306.
  • M. Radovic, M.W. Barsoum, T. El-Raghy and S.M. Wiederhorn, Tensile creep of coarse-grained Ti3SiC2 in the 1000–1200°C temperature range. J. Alloys Compounds 361 (2003), pp. 299–312.
  • T. El-Raghy, M.W. Barsoum, A. Zavaliangos and S.R. Kalidindi, Processing and mechanical properties of Ti3SiC2: II, Effect of grain size and deformation temperature. J. Am. Ceram. Soc. 82 (1999), pp. 2855–2860.
  • T. Zhen, M.W. Barsoum, S.R. Kalidindi, M. Radovic, Z.M. Sun and T. ElRaghy, Compressive creep of fine and coarse-grained T3SiC2 in air in the 1100–1300°C temperature range. Acta Mater. 53 (2005), pp. 4963–4973.
  • J. Wang and Y. Zhou, Recent progress in theoretical prediction, preparation, and Characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 39 (2009), pp. 415–443.
  • M.W. Barsoum and T. El-Raghy, The MAX phases: Unique new carbide and nitride materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. Am. Sci. 89 (2003), pp. 334–343.
  • H. Zhang, F. zhi Dai, H. Xiang, Z. Zhang and Y. Zhou, Crystal structure of Cr4AlB4: A new MAB phase compound discovered in Cr-Al-B system. J. Mater. Sci. Technol. 35 (2019), pp. 530–534.
  • T. Zhen, M.W. Barsoum and S.R. Kalidindi, Effects of temperature, strain rate and grain size on the compressive properties of Ti3SiC2. Acta Mater. 53 (2005), pp. 4163–4171.
  • M.W. Barsoum and T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79 (1996), pp. 1953–1956.
  • M.A. Hadi, Superconducting phases in a remarkable class of metallic ceramics. J. Phys. Chem. Solids 138 (2020), pp. 109275-1–109275-38.
  • S.K. Mitro, M.A. Hadi, F. Parvin, R. Majumder, S.H. Naqid and A.K.M.A. Islama, Effect of boron incorporation into the carbon-site in Nb2SC MAX phase: Insights from DFT. J. Mater. Res. Tec 11 (2021), pp. 1969–1981.
  • A. Azzouz-Rached, M.A. Hadi, H. Rached, T. Hadji, D. Rached and A. Bouhemadou, Pressure effects on the structural, elastic, magnetic and thermodynamic properties of Mn2AlC and Mn2SiC MAX phases. J. Alloys Compounds 885 (2021), pp. 160998.
  • H. Nowotny, Strukturchemie einiger verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem. 5 (1971), pp. 27–70.
  • W. Jeitschko, H. Nowotny and F. Benesovsky, Carbides of formula T2MC. J. Less Common Met. 7 (1964), pp. 133–138.
  • W. Jeitschko, H. Nowotny and F. Benesovsky, Ti2AlN, eine stickstoffhaltige H-phase. Monatsh. Chem. Verwandte Teile Anderer Wiss. 94 (1963), pp. 1198–1200.
  • M.A. Hadi, N. Kelaidis, S.H. Naqib, A. Chroneos and A.K.M.A. Islam, Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC. J. Phys. Chem. Solids 129 (2019), pp. 162–171.
  • Q. Xu, Y. Zhou, H. Zhang, A. Jiang, Q. Tao, J. Lu, J. Rosén, Y. Niu, S. Grasso and C. Hu, Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. J. Adv. Ceram. 9 (2020), pp. 481–492.
  • M.A. Hadi, M. Dahlqvist, S.-R.G. Christopoulos, S.H. Naqib, A. Chroneos and A.K.M.A. Islam, Chemically stable new MAX phase V2SnC: A damage and radiation tolerant TBC material. RSC Adv. 10 (2020), pp. 43783–43798.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965), pp. A1133–A1138.
  • M.C. Payne, M.P. Teter, D.C. Allen, T.A. Arias and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64 (1992), pp. 1045–1097.
  • V. Milman, B. Winkler, J.A. White, C.J. Packard, M.C. Payne, E.V. Akhmatskaya and R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. Int. J. Quant. Chem. 77 (2000), pp. 895–910.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192.
  • K. Parlinski, Z.Q. Li and Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78 (1997), pp. 4063–4066.
  • G.V. Sin’ko and N.A. Smirnov, Relative stability and elastic properties of hcp, bcc, and fcc beryllium under pressure. Phys. Rev. B 71 (2005), pp. 214108-1–214108-7.
  • Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76 (2007), pp. 1–15.
  • M. Born and K. Huang, Dynamical Theory and Experiment I, Springer-Verlag, Berlin, 1982.
  • D.M. Teter, Computational alchemy: The search for new superhard materials. MRS Bull. 23 (1998), pp. 22–27.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65 (1952), pp. 349–354.
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-J Appl. Math. Mech./Zeitschrift Für Angewandte Math. Und Mech. 9 (1929), pp. 49–58.
  • S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45 (1954), pp. 823–843.
  • V. Tvergaard and J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion or expansion anisotropy. J. Am. Chem. Soc. 71 (1988), pp. 157–166.
  • P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84 (1998), pp. 4891–4904.
  • I. Shivakumar S. I. Ranganathan, and M Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101 (2008), pp. 1–4.
  • Y.X. Wang, Z.X. Yan, W. Liu, G.L. Zhou and J.B. Gu, First-principles study of elastic and electronic properties of layered ternary nitride SrZrN2 under pressure. Philos. Mag. 99 (2019), pp. 1–19.
  • J.F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford, 1985.
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24 (1963), pp. 909–917.
  • K.B. Panda and K.S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Comput. Mater. Sci. 35 (2006), pp. 134–150.
  • Y.L. Pei, J.Q. He, J.F. Li, F. Li, Q.J. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe and L.D. Zhao, High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater. 5 (2013), pp. 47.
  • Y. Xiao, C. Chang, Y.L. Pei, D. Wu, K.L. Peng, X.Y. Zhou, S.K. Gong, J.Q. He, Y.S. Zhang, Z. Zeng and L.D. Zhao, Origin of low thermal conductivity in SnSe. Phys. Rev. B 94 (2016), pp. 1–6.
  • S.C. Abrahams and F.S.L. Hsu, Debye temperatures and cohesive properties. J. Chem. Phys 63 (1975), pp. 1162.
  • F. Chu, Y. He, D.J. Thoma and T.E. Mitchell, Elastic constants of the Cl5 laves phase compound NbCr2. Scr. Metall. Mater. 33 (1995), pp. 1295–1300.
  • D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coating. Technol. 163 (2003), pp. 67–74.
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33 (2003), pp. 383–417.
  • D.G. Cahill, S.K. Watson and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46 (1992), pp. 6131–6140.
  • Y. Liu, V.R. Cooper, B. Wang, H. Xiang, Q. Li, Y. Gao, J. Yang, Y. Zhou and B. Liu, Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Mater. Res. Lett. 7 (2019), pp. 145–151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.