209
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Stage-II fatigue crack growth model from 3D dislocation dynamics simulations

, &
Pages 504-521 | Received 16 Jun 2021, Accepted 16 Nov 2021, Published online: 15 Dec 2021

References

  • T. Kruml, J. Polák, K. Obrtlík, and S. Degallaix, Dislocation structures in the bands of localised cyclic plastic strain in austenitic 316l and austenitic-ferritic duplex stainless steels, Acta. Mater. 45 (1997), pp. 5145–5151. Available at https://www.sciencedirect.com/science/article/pii/S135964549700178X.
  • J. Man, K. Obrtlík, C. Blochwitz, and J. Polák, Atomic force microscopy of surface relief in individual grains of fatigued 316l austenitic stainless steel, Acta. Mater. 50 (2002), pp. 3767–3780. Available at https://www.sciencedirect.com/science/article/pii/S1359645402001672.
  • J. Man, T. Vystavl, A. Weidner, I. Kubna, M. Petrenec, T. Kruml, and J. Polák, Study of cyclic strain localization and fatigue crack initiation using fib technique, Int. J. Fatigue. 39 (2012), pp. 44–53. Available at https://www.sciencedirect.com/science/article/pii/S0142112311001150, physical and phenomenological approaches to fatigue damage.
  • M. Bao-Tong and C. Laird, Overview of fatigue behavior in copper single crystalsi. surface morphology and stage i crack initiation sites for tests at constant strain amplitude, Acta Metallurgica 37 (1989), pp. 325–336. Available at https://www.sciencedirect.com/science/article/pii/0001616089902174.
  • J. Ahmed, A. Wilkinson, and S. Roberts, Ecci characterisation of dislocation structures associated with extrusion/intrusion systems and fatigue cracks in copper single crystals, Phil. Mag. A 81 (2001), pp. 1473–1488.
  • K. Katagiri, A. Omura, K. Koyanagi, J. Awatani, T. Shiraishi, and H. Kaneshiro, Early stage crack tip dislocation morphology in fatigued copper, Metall. Trans. A 8 (1977), pp. 1769–1773.
  • J. Ahmed, A. Wilkinson, and S. Roberts, Study of dislocation structures near fatigue cracks using electron channelling contrast imaging technique (ECCI), J. Microsc. 195 (1999), pp. 197–203.
  • Y. Kaneko, M. Ishikawa, and S. Hashimoto, Dislocation structures around crack tips of fatigued polycrystalline copper, Mater. Sci. Eng.: A 400 (2005), pp. 418–421.
  • B.A. Bilby, A.H. Cottrell, and K. Swinden, The spread of plastic yield from a notch, Proc. R. Soc. Lond. A. Math. Phys. Sci. 272 (1963), pp. 304–314.
  • R. Lardner and A.H. Cottrell, Bilby-Cottrell–Swinden model for a growing crack with residual stresses, Proc. R. Soc. London. A. Math. Phys. Sci. 317 (1970), pp. 199–209.
  • G.P. Reddy, C. Robertson, C. Déprés, and M. Fivel, Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycrystals: A three-dimensional dislocation dynamics investigation, Acta. Mater. 61 (2013), pp. 5300–5310.
  • S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998.
  • V. Doquet, A first stage in the development of micromechanical simulations of the crystallographic propagation of fatigue cracks under multiaxial loading, Fatigue Fract. Eng. Mater. Struct. 21 (1998), pp. 661–672.
  • V. Deshpande, A. Needleman, and E. Van der Giessen, Discrete dislocation plasticity modeling of short cracks in single crystals, Acta. Mater. 51 (2003), pp. 1–15.
  • B. Künkler, O. Düber, P. Köster, U. Krupp, C. Fritzen, and H. Christ, Modelling of the transition from stage i to stage ii short crack propagation, Eng. Fract. Mech. 75 (2008), pp. 715–725.
  • P. Hansson and S. Melin, Simulation of simplified zigzag crack paths emerging during fatigue crack growth, Eng. Fract. Mech. 75 (2008), pp. 1400–1411.
  • F. Riemelmoser, R. Pippan, and H. Stüwe, An argument for a cycle-by-cycle propagation of fatigue cracks at small stress intensity ranges, Acta. Mater. 46 (1998), pp. 1793–1799.
  • C. Bjerkén and S. Melin, Growth of a short fatigue crack—a long term simulation using a dislocation technique, Int. J. Solids. Struct. 46 (2009), pp. 1196–1204.
  • C. Déprés, C. Robertson, and M. Fivel, Low-strain fatigue in AISI 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. dislocation microstructures and mechanical behaviour, Philos. Mag. 84 (2004), pp. 2257–2275.
  • C. Déprés, C. Robertson, and M.C. Fivel, Low-strain fatigue in 316l steel surface grains: A three dimension discrete dislocation dynamics modelling of the early cycles. part 2: persistent slip markings and micro-crack nucleation, Philos. Mag. 86 (2006), pp. 79–97.
  • C. Heinrich and V. Sundararaghavan, A method to predict fatigue crack initiation in metals using dislocation dynamics, Corros. Rev. 35 (2017), pp. 325–341.
  • C. Déprés, G. Prasad Reddy, C. Robertson, and M. Fivel, An extensive 3d dislocation dynamics investigation of stage-i fatigue crack propagation, Philos. Mag. 94 (2014), pp. 4115–4137.
  • G. Prasad Reddy, R. Sandhya, K. Laha, C. Depres, C. Robertson, and A. Bhaduri, The effect of the location of stage-i fatigue crack across the persistent slip band on its growth rate—a 3d dislocation dynamics study, Philos. Mag. 97 (2017), pp. 1265–1280.
  • M. Verdier, M. Fivel, and I. Groma, Mesoscopic scale simulation of dislocation dynamics in FCC metals: Principles and applications, Model. Simul. Mater. Sci. Eng. 6 (1998), p. 755.
  • M. Fivel and C. Depres, An easy implementation of displacement calculations in 3d discrete dislocation dynamics codes, Philos. Mag. 94 (2014), pp. 3206–3214.
  • M. Fivel, T. Gosling, and G. Canova, Implementing image stresses in a 3d dislocation simulation, Model. Simul. Mater. Sci. Eng. 4 (1996), p. 581.
  • C. Déprés, Communication to ANR AFGRAP monitoring meeting, Tech. Rep., France, 2013.
  • L. Tabourot, M. Fivel, and E. Rauch, Generalised constitutive laws for fcc single crystals, Mater. Sci. Eng.: A 234 (1997), pp. 639–642.
  • M. Fivel, C. Robertson, G. Canova, and L. Boulanger, Three-dimensional modeling of indent-induced plastic zone at a mesoscale, Acta. Mater. 46 (1998), pp. 6183–6194.
  • N. Malesys, Probabilistic modeling of crack networks in thermal fatigue; modelisation probabiliste de formation de reseaux de fissures de fatigue thermique, 2007.
  • K. Obrtlik, T. Kruml, and J. Polak, Dislocation structures in 316l stainless steel cycled with plastic strain amplitudes over a wide interval, Mater. Sci. Eng.: A 187 (1994), pp. 1–9.
  • K. Obrtli´k, J. Polák, M. Hájek, and A. Vašek, Short fatigue crack behaviour in 316l stainless steel, Int. J. Fatigue. 19 (1997), pp. 471–475.
  • J. Polák, K. Obrtlik, and A. Vašek, Short crack growth kinetics and fatigue life of materials, Mater. Sci. Eng.: A 234 (1997), pp. 970–973.
  • D. Harris and H. Dunegan, Continuous monitoring of fatigue-crack growth by acoustic-emission techniques, Exp. Mech. 14 (1974), pp. 71–81.
  • J. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York, 1982.
  • A. Van der Ven and G. Ceder, The thermodynamics of decohesion, Acta. Mater. 52 (2004), pp. 1223–1235. Available at https://www.sciencedirect.com/science/article/pii/S1359645403007006.
  • C.P.B. Jr and E.A.S. Jr, The fatigue crack growth behavior of the alculi alloy weldalite 049, Fatigue Fract. Eng. Mater. Struct. 14 (1991), pp. 103–114.
  • J. Rice and D. Drucker, Energy changes in stressed bodies due to void and crack growth, Int. J. Fract. Mech. 3 (1967), pp. 19–27.
  • T. Mura, A theory of fatigue crack initiation, Mater. Sci. Eng.: A 176 (1994), pp. 61–70. Available at https://www.sciencedirect.com/science/article/pii/0921509394909598.
  • C. Robertson, L. Vincent, S. Paradowski, and P. Villechaise, Projet afgrap: Livrable 3.3.4 micro-propagation des fissures de fatigue dans un acier 316l: effet de lorientation cristallographique et de la contrainte moyenne, Tech. Rep. DEN/DANS/DMN/SRMA/LC2M/NT/2012-3327/A, French Atomic and Alternative Energy Commission, 2012.
  • C. Robertson, G.V. Prasad Reddy, and C. Déprés, Effect of grain disorientation on early fatigue crack propagation in fcc polycrystals: Dislocation dynamics simulations and corresponding experimental validation, Trans. Indian Inst. Met. 69 (2016), pp. 477–481.
  • A.A. Tavassoli, Dislocation concepts applied to fatigue properties of austenitic stainless steels including time-dependent modes, Philos Mag A 54 (1986), pp. 521–538. Available at https://doi.org/https://doi.org/10.1080/01418618608243610.
  • J. Polák, K. Obrtlík, and M. Hájek, Cyclic plasticity in type 316l austenitic stainless steel, Fatigue Fract. Eng. Mater. Struct. 17 (1994), pp. 773–782. Available at https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1111/j.1460-2695.1994.tb00808.x.
  • M. Rieth, B. Dafferner, and H.D. Röhrig, Embrittlement behaviour of different international low activation alloys after neutron irradiation, J. Nucl. Mater. 258–263 (1998), pp. 1147–1152. Available at https://www.sciencedirect.com/science/article/pii/S0022311598001718.
  • K. ichi Ebihara, T. Suzudo, M. Yamaguchi, and Y. Nishiyama, Introduction of vacancy drag effect to first-principles-based rate theory model for irradiation-induced grain-boundary phosphorus segregation, J. Nucl. Mater. 440 (2013), pp. 627–632. Available at https://www.sciencedirect.com/science/article/pii/S002231151300812X.
  • M. Yamaguchi, First-principles study on the grain boundary embrittlement of metals by solute segregation: Part i. Iron (fe)-solute (b, c, p, and s) systems, Metall. Mater. Trans. A 42 (2011), pp. 319–329.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.