226
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The effect of uniaxial stress on magneto-electronic properties and band Jahn–Teller distortion of Ni2MnGa Heusler alloy: an ab initio study

, , , &
Pages 844-859 | Received 07 Sep 2021, Accepted 30 Nov 2021, Published online: 21 Dec 2021

References

  • A. Birsan, Electronic structure and magnetism of new scandium-based full Heusler compounds: Sc2CoZ (Z = Si, Ge, Sn). J. Alloy Comp. 598 (2014), pp. 230–235.
  • X. Wang, Z. Cheng, Y. Jin, Y. Wu, X. Dai and G. Liu, Magneto-electronic properties and tetragonal deformation of rare-earth-element-based quaternary Heusler half-metals: a first-principles prediction. J. Alloy. Comp 734 (2018), pp. 329–341.
  • M.A. Hossain, M.T. Rahman, M. Khatun and E. Haque, Structural, elastic, electronic, magnetic and thermoelectric properties of new quaternary Heusler compounds CoZrMnX (X = Al, Ga, Ge, In). Comput. Cond. Matter 15 (2018), pp. 31–41.
  • G. Surucu, A. Candan, A. Erkisi, A. Gencer and H.H. Güllü, First principles study on the structural, electronic, mechanical and lattice dynamical properties of XRhSb (X = Ti and Zr) paramagnet half-Heusler antimonides. Mater. Res. Express 6 (2019), pp. 106315.
  • A. Erkisi, G. Surucu and R. Ellialtioglu, The investigation of electronic, mechanical and lattice dynamical properties of PdCoX (X = Si and Ge) half-Heusler metallics in α, β and γ structural phases: an ab initio study. Philos. Mag. 97(26) (2017), pp. 2237–2254.
  • L.G. Machado and M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36 (2003), pp. 683–691.
  • A. Gencer, O. Surucu, D. Usanmaz, R. Khenata, A. Candan and G. Surucu, Equiatomic quaternary Heusler compounds TiVFeZ (Z = Al, Si, Ge): half-metallic ferromagnetic materials. J. Alloy. Comp. 683 (2021), pp. 160869.
  • S. Mondal, C. Mazumdar, R. Ranganathan, E. Alleno, P.C. Sreeparvathy, V. Kanchana and G. Vaitheeswaran, Ferromagnetically correlated clusters in semimetallic Ru2NbAl Heusler alloy and its thermoelectric properties. Phys. Rev. B 98 (2018), pp. 205130.
  • H. Luo, Y. Xin, B. Liu, F. Meng, H. Liu, E. Liu and G. Wu, Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). J. Alloy. Comp. 665 (2016), pp. 180–185.
  • T. Graf, F. Casper, J. Winterlik, B. Balke, G.H. Fecher and C. Felser, Crystal structure of New Heusler compounds. Z. Für Anorg. Allg. Chem. 635 (2009), pp. 976–981.
  • E. Bayar, N. Kervan and S. Kervan, Half-metallic ferrimagnetism in the Ti2CoAl Heusler compound. J. Magn. Magn. Mater. 323 (2011), pp. 2945–2948.
  • N. Kervan and S. Kervan, Half-metallic properties of Ti2FeSi full-Heusler compound. J. Phys. Chem. Solids 72 (2011), pp. 1358–1361.
  • S. Kervan and N. Kervan, Half-metallic ferrimagnetism in the full-Heusler compound Co2ScSb. Intermetallics 19 (2011), pp. 1642–1645.
  • S.-C. Wu, G.H. Fecher, S.S. Naghavi and C. Felser, Elastic properties and stability of Heusler compounds: cubic Co2YZ compounds with L21 structure. J. Appl. Phys. 125 (2019), pp. 082523.
  • T. Hellal, D. Bensaid, B. Doumi, A. Mohammedi, F. Benzoudji, Y. Azzaz and M. Ameri, Mn2YGa (Y = Ir and Pt), a promising shape memory alloy by DFT methods. Chin. J. Phys. 55 (2017), pp. 806–812.
  • T. Bachaga, J. Zhang, M. Khitouni and J.J. Sunol, NiMn-based Heusler magnetic shape memory alloys: a review. Int. J. Adv. Manufact. Technol. 103 (2019), pp. 2761–2772.
  • Y. Shen, Z. Wei, W. Sun, Y. Zhang, E. Liu and J. Liu, Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys. Acta Mater. 188 (2020), pp. 677–685.
  • M.T. Ghahfarokhi, F. Casoli, S. Fabbrici, L. Nasi, F. Celegato, R. Cabassi, G. Trevisi, G. Bertoni, D. Calestani, P. Tiberto and F. Albertini, Martensite-enabled magnetic flexibility: the effects of post-growth treatments in magnetic-shape-memory Heusler thin films. Acta Mater. 187 (2020), pp. 135–145.
  • D.J. Singh, Planes Waves, Pseudo-Potentials and the LAPW Method, Kluwer Academic Publisher, Boston, 1994.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Technische Universität Wien, Wien, 2001.
  • J.P. Perdew, K. Burke and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 54 (1996), pp. 16533.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • C. Felser, V. Alijani, J. Winterlik, S. Chadov and A.K. Nayak, Tetragonal Heusler compounds for spintronics. IEEE Trans. Magn. 49(2) (2013), pp. 682–685.
  • T.E. Stenger and J. Trivisonno, Ultrasonic study of the two-step martensitic phase transformation in Ni2MnGa. Phys. Rev. B. 57 (1998), pp. 2735–2739.
  • J. Winterlik, S. Chadov, A. Gupta, V. Alijani, T. Gasi, K. Filsinger, B. Balke, G.H. Fecher, C.A. Jenkins, F. Casper, J. Kübler, G. Liu, L. Gao, S.S.P. Parkin and C. Felser, Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24 (2012), pp. 6283–6287.
  • W. Zhang, T. Yu, Z. Huang and W. Zhang, Band Jahn–Teller effects in Rh2TMSn full Heusler compounds. J. Alloy. Comp. 618 (2015), pp. 78–83.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA. 30 (1944), pp. 5390.
  • S. Wu, S.S. Naghavi, G.H. Fecher and C. Felser, A critical study of the elastic properties and stability of Heusler compounds: phase change and tetragonal X2YZ compounds. J. Mod. Phys. 9 (2018), pp. 775–895.
  • P.J. Webster, K.R.A. Ziebeck, S.L. Town and M.S. Peak, Magnetic order and phase transformation in Ni2MnGa. Philos. Mag. B. 49 (1984), pp. 295–310.
  • V.V. Martynov and V.V. Kokorin, The crystal structure of thermally- and stress-induced martensites in Ni2MnGa single crystals. J. Phys. III. 2 (1992), pp. 739.
  • J. Worgull, E. Petti and J. Trivisonno, Behavior of the elastic properties near an intermediate phase transition in Ni2MnGa. Phys. Rev. B. 54 (1996), pp. 15695–15699.
  • K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley and V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69 (1996), pp. 1966–1968.
  • M.A. Uijttewaal, T. Hickel, J. Neugebauer, M.E. Gruner and P. Entel, Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. Phys. Rev. Lett. 102 (2009), pp. 035702.
  • H. Rached, D. Rached, R. Khenata, A.H. Reshak and M. Rabah, First-principles calculations of structural, elastic and electronic properties of Ni2MnZ (Z = Al, Ga and In) Heusler alloys. Phys. Status Solidi B. 246(7) (2009), pp. 1580–1586.
  • B. Balke, S. Wurmehl, G.H. Fecher, C. Felser and J. Kübler, Rational design of new materials for spintronics: Co2FeZ (Z = Al, Ga, Si, Ge). Sci. Technol. Adv. Mater. 9 (2008), pp. 014102.
  • P.J. Brown, A.Y. Bargawi, J. Crangle, K.U. Neumann and K.R.A. Ziebeck, Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys. Condens. Matter. 11 (1999), pp. 4715–4722.
  • A. Kimura, M. Ye, M. Taniguchi, E. Ikenaga, J.M. Barandiarn and V.A. Chernenko, Lattice instability of Ni-Mn-Ga ferromagnetic shape memory alloys probed by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 103 (2013), pp. 072403.
  • J.C. Suits, Structural instability in new magnetic Heusler compouns. Solid State Commun. 18 (1976), pp. 423–425.
  • Q. Zeng, J. Shen, H. Zhang, J. Chen, B. Ding, X. Xi, E. Liu, W. Wang and G. Wu, Electronic behaviors during martensitic transformations in all-d-metal Heusler alloys. J. Phys. Condens. Matter. 31 (2019), pp. 425401.
  • L. Fast, J.M. Wills, B. Johansson and O. Eriksson, Elastic constants of hexagonal transition metals: theory. Phys. Rev. B. 51 (1995), pp. 17431–17438.
  • F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 90 (2014), pp. 224104.
  • P.P. Gunaicha, S. Gangam, J.L. Roehl and S.V. Khare, Structural, energetic and elastic properties of Cu2ZnSn(SxSe1−x)4 (x = 1, 0.75, 0.5, 0.25, 0) alloys from first-principles computations. Sol. Energy 102 (2014), pp. 276–281.
  • M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos and B.M. Klein, Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B. 41 (1990), pp. 10311–10323.
  • M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B. 47 (1993), pp. 2493–2500.
  • M.J. Mehl, D.J. Singh and D.A. Papaconstantopoulos, Properties of ordered intermetallic alloys: first-principles and approximate methods. Mater Sci Eng. A170 (1993), pp. 49–57.
  • S. Ozdemir Kart and T. Cagin, Elastic properties of Ni2MnGa from first-principles calculations. J. Alloys Compd 508 (2010), pp. 177–183.
  • O. Baraka, S. Amari and A. Yakoubi, First-principles calculations of structural, electronic, magnetic and elastic properties of Heusler alloys Ru2CoZ (Z = Si, Ge and Sn). SPIN 8(3) (2018), pp. 1850009.
  • H. Abbassa, S. Meskine, A. Labdelli, S. Kacher, T. Belaroussi and B. Amrani, Promising shape memory in NiCoMnZ (Z = Si, Ge and Sn) quaternary Heusler alloy from first principles. Mater. Chem. Phys. 256 (2020), pp. 123735.
  • T. Ouahrani, A. Otero-de-la-Roza, A.H. Reshak, R. Khenata, H.I. Faraoun, B. Amrani, M. Mebrouki and V. Luaña, Elastic properties and bonding of the AgGaSe2 chalcopyrite. Physica B. 405 (2010), pp. 3658–3664.
  • M. Tomić, H.O. Jeschke, R.M. Fernandes and R. Valentí, In-plane uniaxial stress effects on the structural and electronic properties of BaFe2As2 and CaFe2As2. Phys. Rev. B. 87 (2013), pp. 174503.
  • K. Kobayashi, Electronic and lattice properties of layered hexagonal compounds under anisotropic compression: a first-principles study. Mater. Trans. 46(6) (2005), pp. 1094–1099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.