309
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Faceting of twin interfaces in rolled pure magnesium

ORCID Icon, ORCID Icon & ORCID Icon
Pages 861-874 | Received 24 Jul 2021, Accepted 17 Dec 2021, Published online: 06 Jan 2022

References

  • S. Jiang, Z. Jiang, and Q. Chen, Deformation twinning in hexagonal-close-packed crystals. Sci. Rep. 9 (618) (2019), pp. 1–5.
  • P. Mullner, Twinning stress of type I and type II deformation twins. Acta Mater. 176 (2019), pp. 211–219.
  • D. Spearot, V. Taupin, K. Dang, and L. Capolungo, Structure and kinetics of 3 dimensional defects on ( 101¯2) twin boundary in magnesium: Atomistic and phase field simulations. Mech. Mater. 143 (2020), pp. 103314.
  • W.D. Russell, N.R. Bratton, Y. Paudel, R.D. Moser, Z.B. McClelland, C.D. Barrett, A.L. Oppedal, W.R. Whittington, H. Rhee, S. Mujahid, B. Paliwal, S.C. Vogel, and H. El Kadiri, In situ characterization of the effect of twin-microstructure interactions on {101¯2} tension and {101¯1} contraction twin nucleation, growth and damage in magnesium. Metals. 10 (2020), pp. 1403.
  • S. Wang, K. Dang, R.J. McCabe, L. Capolungo, and C.N. Tomé, Three-dimensional atomic scale characterization of {112¯2} twin boundaries in titanium. Acta Mater. 208 (2021), pp. 116707.
  • J.W. Christian and S. Mahajan, Deformation twinning. Prog. Mat. Sci. 39 (1995), pp. 1–157.
  • M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma, Non-schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 56 (2008), pp. 5–15.
  • I.J. Beyerlein, J. Wang, M.R. Barnett, and C.N. Tomé, Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations. Proc. Royal Society A 468 (2012), pp. 1496–1520.
  • F. Mokdad, D.L. Chen, and D.Y. Li, Twin-twin interactions and contraction twin formation in an extruded magnesium alloy subjected to an alteration of compressive direction. J. Alloy. Compd. 737 (2018), pp. 549–560.
  • A. Jäger, A. Ostapovets, P. Molnár, and P. Lejček, {101¯2}−{101¯2} Double twinning in magnesium. Philos. Mag. Lett. 91 (2011), pp. 537–544.
  • C. Cayron, A one-step mechanism for new twinning modes in magnesium and titanium alloys modelled by the obliquity correction of a (58°, a+2b) prototype stretch twin. Acta Cryst. A74 (2018), pp. 44–53.
  • A. Ostapovets, J. Buršík, K. Krahula, L. Kral, and A. Serra, On the relationship between {112¯2} and {102¯6} conjugate twins and double extension twins in rolled pure Mg. Philos. Mag. 97 (2017), pp. 1088–1101.
  • A. Ostapovets and R. Gröger, Twinning disconnections and basal–prismatic twin boundary in Mg. Model. Simul. Mater. Sci. Eng. 22 (2014), pp. 025015.
  • B. Xu, L. Capolungo, and D. Rodney, On the importance of prismatic/basal interfaces in the growth of (1¯012) twins in hexagonal close packed crystals. Scr. Mater. 68 (2013), pp. 901–904.
  • B.M. Morrow, R.J. McCabe, E.K. Cerreta, and C.N. Tome, Observation of the atomic structure of tensile and compressive and twin twin interaction in Zr. Metall. Mater. Trans. A 45 (2014), pp. 5891–5897.
  • J. Zhang, G. Xi, and X. Wan, {101¯1} Twin boundary showing very large deviation from the theoretical one in deformed magnesium alloy. Mater. Charact. 132 (2017), pp. 280–283.
  • C.D. Barrett and H. El Kadiri, Impact of deformation faceting on {101¯2}, {101¯1} and {101¯3} embryonic twin nucleation in hcp metals. Acta Mater. 70 (2014), pp. 137–161.
  • C.D. Barrett and H. El Kadiri, Fundamentals of mobile tilt grain boundary faceting. Scr. Mater. 84–85 (2014), pp. 15–18.
  • J. Hirth, Dislocations, steps and disconnections at interfaces. J. Phys. Chem. Solids 55 (1994), pp. 985–989.
  • Q. Sun, X.Y. Zhang, R.S. Yin, Y. Ren, and L. Tan, Structural characterization of {101¯3} twin boundaries in deformed cobalt. Scr. Mater. 108 (2015), pp. 109–112.
  • Q. Sun, X.Y. Zhang, Y.C. Wang, Y. Ren, L. Tan, and Q. Liu, Structural characterization of {101¯1} twin boundaries in deformed cobalt. Mater. Character. 116 (2016), pp. 44–47.
  • Y.J. Li, Y.J. Chen, J.C. Walmsleya, R.H. Mathinsen, S. Dumoulina, and H.J. Rovenb, Faceted interfacial structure of {1¯011} twin in Ti formed during equal channel angular pressing. Scr. Mater. 62(7) (2010), pp. 443–446.
  • A. Ostapovets and A. Serra, Review of non-classical features of deformation twinning in hcp metals and their description by disconnection mechanisms. Metals. 10 (2020), pp. 1134.
  • D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D. Srolovitz, Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B. 73 (2006), pp. 024116.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117 (1995), pp. 1–19.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18 (2009), pp. 015012.
  • C. Ni, H. Ding, M. Asta, and X. Jin, Computational study of 11¯00 symmetric tilt grain boundaries in Mg and Ti. Scr. Mater. 109 (2015), pp. 94–99.
  • A. Ostapovets and A.D. Sheikh-Ali, Misorientation dependence of atomic structure and energy of 101¯0 symmetric tilt boundaries in magnesium. Philos. Mag. 98 (2018), pp. 3235–3246.
  • R.C. Pond, N. McAuley, A. Serra, and W. Clark, Transformation matrices for hexagonal and trigonal crystals. Scr. Metall. 21 (1987), pp. 197–202.
  • A. Serra, D.J. Bacon, and R.C. Pond, The crystallography and core structure of twinning dislocations in H.C.P. metals. Acta Metall. 36 (1988), pp. 3183–3203.
  • A.E. Romanov and A.L. Kolesnikova, Application of disclination concept to solid structures. Prog. Mater. Sci. 54 (2009), pp. 740–769.
  • A. Serra and D.J. Bacon, A new model for {101¯2} twin growth in hcp metals. Philos. Mag. A. 73 (1996), pp. 333–343.
  • H. Su, X. Zhou, S. Zheng, H. Yea, and Z. Yang, Atomic-resolution studies on reactions between basal dislocations and {101¯2} coherent twin boundaries in a Mg alloy. J. Mater. Sci. Tech. 66 (2021), pp. 28–35.
  • H. Su, X. Zhou, M. Zhang, S. Zheng, H. Ye, and Z. Yang, Atomic-resolution studies on reactions of slip dislocations with {101¯1} twin boundaries and local plastic relaxation in a Mg alloy. Acta Mater. 206 (2021), pp. 116622.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.