105
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Band engineering of modified rhombohedral Cu4Mn2Te4: ab initio approach

, , , ORCID Icon &
Pages 1261-1289 | Received 02 Mar 2021, Accepted 17 Dec 2021, Published online: 12 Jan 2022

References

  • C.B. Ferdinandobosi and M. Pasero, Nomenclature and classification of the spinel supergroup. Eur. J. Miner. 31 (2019), pp. 183–192.
  • T.-R. Wei, Y. Qin, T. Deng, B. Qingfeng Song, R. Liu, P. Qui, X. Shi and L. Chen, Copper chalcogenides thermoelectric materials. Sci. China Mater. 62 (2018), pp. 8–24.
  • R.P. VanStapele, Ferro-Magnetic Materials, A Handbook on the Properties of Magnetically Ordered Substances vol. 3, North -Holland Publishing Company, Amsterdam, 1982.
  • F. Hulliger, Structure and bonding V.4 springer, Berlin. Cryst. Chem. Chalcog Pinticides Trans Elem. 4 (1968), pp. 83.
  • V.M. Talanov. Energetic crystallo chemistry of multisublattice crystals, Rostov-on-Don, RSU, (1986).
  • R. Endoh, J. Awaka and S. Nagata, Ferromagnetism and metal- insulator transition in the thio-spinel Cu (Ir1-xCrx)2S4. Phys. Rev. B 68 (2003), pp. 115106.
  • K. Miyatani, T. Tanaka and M. Ishikawa, Electron correlation in antiferromagnet and superconductor thiospinel Cu-Co-S4. J. Appl. Phys. 83 (1998), pp. 6792–6794.
  • T. Bitoh, T. Hagino, Y. Seki, S. Chikazawa and S. Nagata, Superconductivity in thiospinel CuRh2S4. J. Phys. Soc. Jpn. 61 (1992), pp. 3011–3012.
  • T. Hagino, Y. Seki, N. Wada, S. Tsuji, T. Shirane, K. Kumagai and S. Nagata, Superconductivity in spinel type compounds CuRh2S4 and CuRh2Se4. Phys. Rev. B Condens. Matter Mater. Phys. 51 (1995), pp. 12673–12684.
  • N.H. Van Maaren, G.M. Schaener and F.K. Lotgering, Superconductivity in sulpho- and selenospinels. Phys. Lett. A 25 (1967), pp. 238–239.
  • R.N. Shelton, D.C. Jhonston and H. Adrian, Measurement of the pressure dependence of Tc for superconducting spinel compounds. Solid State Commun. 20 (1976), pp. 1077–1080.
  • T. Shirane, T. Hagino, Y. Seki, S. Chikazawa and S. Nagata, Superconductivity in selenospinel CuRh2Se4. J. Phys. Soc. Jpn. 62 (1993), pp. 374–375.
  • A. Goto, T. Shimizu, G. Cao, H. Suzuki, H. Kitazawa and T. Matsumoto, Superconductivity in the thiospinel Cu0.7Zn0.3Ir2S4 studied by Cu-NMR. Physica C 341–348 (2000), pp. 737–738.
  • G. Cao, T. Furubayashi, H. Suzuki, H. Kitazawa, T. Matsumoto and Y. Uwatoko, Suppression of metal-to-insulator transition and appearance of superconductivity in Cu1-x ZnxIr2S4. Phys. Rev. B 64 (2001), pp. 214514.
  • G.F. Goya, H.R. Rechenberg and V. Sagredo, Study of the spin glass transition in FeCr2xIn2-2xS4thiospinel. J. Magn. Magn. Mater. 226–230 (2001), pp. 1298–1299.
  • K. Balcerek, C. Marucha, R. Wawryk, T. Tyc, N. Matsumoto and S. Nagata, Thermalconductivity and thermoelectric power of CuIr2S4and CuIr2Se4. Philos. Mag. B 79 (1999), pp. 1021–1028.
  • N. Imanishi, K. Inoue, Y. Takeda and O. Yamamoto, Thiospinels as cathode for lithium secondary battery. J. Power Sources 44 (1993), pp. 619–625.
  • S. Nagata, N. Matsumoto, Y. Kato, T. Furubayashi, T. Matsumoto, J.P. Sanchez and P. Vulliet, Metal-insulator transition in the spinel type CuIr2(S1-xSex)4. Phys. Rev. B 58 (1998), pp. 6844–6854.
  • R. Endoh, N. Matsumoto, S. Chikazawa, S. Nagata, T. Furubayashi and T. Matsumoto, Metal-insulator translator in the spinel- type Cu(1-x)NixIr2S4. Phys. Rev. B 64 (2001), pp. 101–107.
  • R. Endoh, N. Matsumoto, J. Awaka, S. Ebisu and S.J. Nagata, Metal insulator transition in the spinel type Cu (Ir1-xCrx)2S4system. Phys. Chem. Solids 63 (2002), pp. 669–674.
  • S. Nagata, S. Ito, R. Endoh and J. Awaka, Metal-insulator transition in the spinel - type Cu (Ir1-xTix)2S4. Philos. Mag. B 82 (2002), pp. 1679–1694.
  • F.K. Lotgering and R.P. Van Stapele, Magnetic properties and electrical conduction of copper-containing sulfo and selenospinels. J.App.Phys. 39 (1968), pp. 417.
  • F.K. Lotgering, Magnetic and electrical properties of Co1-xCuxRh2S4. J. Phy. Chem. Solids 30 (1969), pp. 1429–1434.
  • G.L. Hart, W.E. Pickett, E.Z. Kurmaev, D. Hartmann, M. Neumann, A. Moewes, D.L. Ederer, R. Endoh, K. Taniguchi and S. Nagata, Electronic strcuture of Cu1-xNixRh2S4 and CuRh2Se4: bandstrcuture calculations, x-ray photoemission, and fluorescence measurements. Phys. Rev. B 61(6) (2000), pp. 4230.
  • P.R. Locher, Cu-NMR in paramagnetic and ferromagnetic CuCr2Se4. Solid State Commun. 5 (1967), pp. 185–187.
  • F.K. Lotgering. Proc. Int. Conf. on Magnetism, Nottingham, 1964, 533. Ins. of Physics and the Physical Soc., London.
  • F.K. Lotgering and R.P. Van Stapele, Magnetic and electrical properties of copper containing sulphides and selenides with spinel structure. Solid State Commun. 5 (1967), pp. 143–146.
  • J.B. Goodenough, Tetrahedral-site copper in chalcogenidespinels. Solid State Commun. 5 (1967), pp. 577–580.
  • J.B. Goodenough, Description of outer d electrons in thiospinel. J. Phys. Chem. Solids 30 (1969), pp. 261–280.
  • T. Jun IchiHorikawa, F. Ogata, T. Kambara and K.I. Gondaira, The spin polarised electronic band structure of chromium spinels: I. J. Phys. C Soild State Phys. 15 (1982), pp. 2613–2623.
  • H. Hahn and B. Harder, Zurkristallstruktur der titansulfide. Z. Anorg. Allg. Chem. 288 (1956), pp. 257–259.
  • M.S. Park, S.K. Kwon and B.I. Min, Half metallic antiferromagnets in thiospinels. Phys. Rev. B 64 (2001), pp. 100403.
  • N. Matsumoto, T. Hagino, K. Taniguchi, S. Chikazawa and S. Nagata, Electrical and magnetic properties of CuTi2S4 and CuZr2S4. Physica B 284–288 (2000), pp. 1978–1979.
  • H. Okada, K. Koyama and K. Watanabe, Transport, magnetic, thermal and structural properties of the spinel compound CuTi2S4. J. Alloys Compd 403 (2005), pp. 34–37.
  • N. Soheilnia, K.M. Kleinke, E. Dashjav, H.L. Cuthbert, J.E. Greedan and H. Kleinke, Crystal structure and physical properties of a new CuTi2S4modification in comparison to the thio-spinel. Inorg. Chem. 43 (2004), pp. 6473.
  • M.V. Talanov, V.B. Shirokov and V.M. Talanov, Phenomenological thermodynamics and the structure formation mechanism of the CuTi2S4rhombohedral phase. Phys. Chem. Chem. Phys. 18 (2016), pp. 10600–10606.
  • Q. Guo, J.–.B. Vaney, P. Virtudazo, R. Minami, Y. Michiue, Y. Yamabe-Mitarai and T. Mori, Thermoelectric properties of variants of Cu4Mn2Te4 with spinel related structure. Inorg. Chem. 57 (2018), pp. 5258–5266.
  • A.M.J.H. Seuter. Private Communication.
  • A.L.N. Stevels. Thesis, Groningnen 1969: Philips Res. Repts. Suppl. M9 (1969).
  • F.K. Lotgering and G.H.A.M. Van der Steen, Crystal structure and magnetic properties of Cu4Mn2Te4. J. Phys. Chem. Solids 33 (1972), pp. 2071–2078.
  • F.K. Lotgering and G.H.A.M. Van der Steen, Ferromagnetic Cu1+y Cr2Te4 and CuAgyCr2Te4 with metal-excessive spinel structure. Solid State Commun. 9 (1971), pp. 1741–1744.
  • R. Plumier and M. Sougi, Magnetic structure of Cu4Mn2Te4. Mater. Sci. Forum 166–169 (1994), pp. 687–694.
  • L.M. Valiev, I.G. Kerimov, N.G. Aliev and A.A. Abdurragimov, The thermal expansion and electrical properties of Cu4Mn2X4 (X: S, Se, and Te). Phys. Stat. Sol. 35(K85) (1976), pp. K85–K88.
  • H. Chen, H. Lin, Y. Liu, X.-T. Wu and L.-M. Wu, Enhanced thermoelectric performance in ternary spinel Cu4Mn2Te4 via synergistic effect of tellurium-deficiency and chlorine-doping. Dalton Trans. 46 (2017), pp. 14752–14756.
  • H.-w.S. QuanshengGuo and T. Mori, Rational design of spinel-type Cu4Mn2Te4/TMTe (TM = Co, Ni) composites with synergistically manipulated electrical and thermal transport properties. Appl. Energy Mater. 3(3) (2020), pp. 2096–2102.
  • W. Li, B. Zhou, J. Li, S. Zhu and J. Li, Single parabolic band behavior of thermoelectric p-type Cu4Mn2Te4. J. Alloys Compd. 753 (2018), pp. 93–99.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965), pp. A1133–A1138.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvansnicka and J. Luitz. WIEN2K: an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology Austria, 2001).
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation. Phys. Rev. Lett. 77 (1996), pp. 3865.
  • K.E. Sickafus, J.M. Wills Lo and N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12) (1999), pp. 3279–3292.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30 (1947), pp. 244.
  • M. Rajagopalan and M. Sundareswari, Ab initio study of the electronic structure of rhodium based intermetallic compounds under pressure. J. Alloys Compd. 379 (2004), pp. 8–15.
  • C. Ravi, P. Vajeeston, S. Mathijaya and R. Asokamani, Electronic structure, phase stability, and cohesive properties of Ti2XAl (X = Nb, V, Zr). Phys. Rev. B 60 (1999), pp. 15683–15690.
  • https://periodictable.com/Elements/029/data.html
  • J. Kubler, Calculated magnetic moment of ∂-manganese. J. Magn. Magn. Mater. 20 (1980), pp. 107–110.
  • R. Keller, W.B. Holzapfel and H. Schulz, Effect of pressure on the atom positions in Se and Te. Phys. Rev. B 16 (1977), pp. 4404.
  • Z.H. Liu, Y.J. Zhang, E.K. Liu, G.D. Liu, X.Q. Ma and G.H. Wu, Role of d-d and p-d hybridization in CoTi-based magnetic semiconductors with 21 and 26 valence electrons. J. Phys. D Appl. Phys. 48 (2015), pp. 325001.
  • S. Khatta, S.K. Tripathi and S. Prakash, First principles study of the electronic and magnetic properties of Zn1-xCoxSe alloys. Solid State Commun. 287 (2019), pp. 48–53.
  • A.D. Becke and E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 124 (2006), pp. 221101.
  • S. Khatta, S.K. Tripathi and S. Prakash, The electronic and magnetic properties of V-doped ZnSe at substitutional/interstitial sites. J. Magn. Magn. Mater. 460 (2018), pp. 354–360.
  • S. Khatta, S.K. Tripathi and S. Prakash, Electronic and magnetic properties of Zn1-xFexSe alloys. J. Solid State Chem. 460 (2018), pp. 354–360.
  • S. Khatta, S.K. Tripathi and S. Prakash, First-principles study on half-metallic ferromagnetic properties of Zn1-xVxSe ternary alloys. Appl. Phys. A 123 (2017), pp. 582.
  • M. Zanib, N.A. Noor, M.A. Iqba, I. Mahmood, A. Mahmood, S.M. Ramay, N.Y.A. Al-Garadi and T. Uzzaman, Density functional theory study of electronic, optical and transport properties of magnesium based MgY2Z4 (Z = S and Se). Curr. Appl. Phys. 20 (2020), pp. 1097–1102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.