182
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Size and temperature-dependent stability of polarization vortex in PbTiO3 nanosheet under uniaxial tension or compression

, , &
Pages 1400-1418 | Received 02 Jul 2021, Accepted 06 Mar 2022, Published online: 15 Mar 2022

References

  • S.E. Park and T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82 (1997), pp. 1804–1811.
  • A.A. Bokov and Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater Sci. 41 (2006), pp. 31–52.
  • S. Prosandeev, I. Ponomareva, I. Naumov, I. Kornev and L. Bellaiche, Original properties of dipole vortices in zero-dimensional ferroelectrics. J. Phys. Condens. Matter 20 (2008), pp. 193201.
  • N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Tagantsev, D.V. Taylor, T. Yamada and S. Streiffer, Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100 (2006), pp. 051606.
  • A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore and N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311 (2006), pp. 1270–1271.
  • B. Li, J.B. Wang, X.L. Zhong, F. Wang, Y.K. Zeng and Y.C. Zhou, Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC Adv. 3 (2013), pp. 7928–7932.
  • P.F. Liu, J.L. Wang, X.J. Meng, J. Yang, B. Dkhil and J.H. Chu, Huge electrocaloric effect in langmuir-blodgett ferroelectric polymer thin films. New J. Phys. 12 (2010), pp. 023035.
  • T.M. Correia, S. Kar-Narayan, J.S. Young, J.F. Scott, N.D. Mathur, R.W. Whatmore and Q. Zhang, PST thin films for electrocaloric coolers. J. Phys. D Appl. Phys. 44 (2011), pp. 165407.
  • C. Ye, J.B. Wang, B. Li and X.L. Zhong, Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure. Sci. Rep. 8 (2018), pp. 293.
  • T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin and S.W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324 (2009), pp. 63–66.
  • Z.G. Xiao, Y.B. Yuan, Y.C. Shao, Q. Wang, Q.F. Dong, C. Bi, P. Sharma, A. Gruverman and J.S. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14 (2015), pp. 193–198.
  • Y.L. Tang, Y.L. Zhu, X.L. Ma, A.Y. Borisevich, A.N. Morozovska, E.A. Eliseev, W.Y. Wang, Y.J. Wang, Y.B. Xu, Z.D. Zhang and S.J. Pennycook, Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348 (2015), pp. 547–551.
  • X.B. Tian, X.Q. He and J. Lu, Atomic scale study of the anti-vortex domain structure in polycrystalline ferroelectric. Philos. Mag. 98 (2018), pp. 118–138.
  • Y. Ivry, D.P. Chu, J.F. Scott and C. Durkan, Flux closure vortexlike domain structures in ferroelectric thin films. Phys. Rev. Lett. 104 (2010), pp. 207602.
  • J. Wang and T.Y. Zhang, Effect of long-range elastic interactions on the toroidal moment of polarization in a ferroelectric nanoparticle. Appl. Phys. Lett. 88 (2006), pp. 182904.
  • L.J. McGilly and J.M. Gregg, Polarization closure in PbZr0.42Ti0.58O3 nanodots. Nano Lett. 11 (2011), pp. 4490–4495.
  • A.K. Yadav, C.T. Nelson, S.L. Hsu, Z. Hong, J.D. Clarkson, C.M. Schlepuetz, A.R. Damodaran, P. Shafer, E. Arenholz, L.R. Dedon, D. Chen, A. Vishwanath, A.M. Minor, L.Q. Chen, J.F. Scott, L.W. Martin and R. Ramesh, Observation of polar vortices in oxide superlattices. Nature 530 (2016), pp. 198.
  • X.B. Tian, X.H. Yang, P. Wang and D. Peng, Motion, collision and annihilation of polarization vortex pair in single crystalline BaTiO3 thin film. Appl. Phys. Lett. 103 (2013), pp. 242905.
  • X.B. Tian, X.H. Yang and W.Z. Cao, Atomistic simulation of strain-induced domain evolution in a uniaxially compressed BaTiO3 single-crystal nanofilm. J. Electron. Mater. 42 (2013), pp. 2504–2509.
  • S.L. Hsu, M.R. McCarter, C. Dai, Z.J. Hong, L.Q. Chen, C.T. Nelson, L.W. Martin and R. Ramesh, Emergence of the vortex state in confined ferroelectric heterostructures. Adv. Mater. 31 (2019), pp. 1901014.
  • P.P. Wu, X.Q. Ma, J.X. Zhang and L.Q. Chen, Phase-field model of multiferroic composites: domain structures of ferroelectric particles embedded in a ferromagnetic matrix. Philos. Mag. 90 (2010), pp. 125–140.
  • J. Wang and M. Kamlah, Domain structures of ferroelectric nanotubes controlled by surface charge compensation. Appl. Phys. Lett. 93 (2008), pp. 042906.
  • I. Naumov, L. Bellaiche and H.X. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432 (2004), pp. 737–740.
  • B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse and M. Alexe, Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9 (2009), pp. 1127–1131.
  • Y. Su and J.N. Du, Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles. Appl. Phys. Lett. 95 (2009), pp. 012903.
  • W.J. Chen, Y. Zheng, B. Wang, D.C. Ma and F.R. Ling, Vortex domain structures of an epitaxial ferroelectric nanodot and its temperature-misfit strain phase diagram. Phys. Chem. Chem. Phys. 15 (2013), pp. 7277–7285.
  • W.J. Chen, Y. Zheng, B. Wang and J.Y. Liu, Coexistence of toroidal and polar domains in ferroelectric systems: A strategy for switching ferroelectric vortex. J. Appl. Phys. 115 (2014), pp. 214106.
  • W.K. Jiang, X.H. Yang, D. Peng and X. B. Tian, Stability of polarisation vortex in ferroelectric nanofilm under stress or curled electric field. Philos. Mag. 101 (2021), pp. 1965–1984.
  • Z.J. Hong, A.R. Damodaran, F. Xue, S.L. Hsu, J. Britson, A.K. Yadav, C.T. Nelson, J.J. Wang, J.F. Scott, L.W. Martin, R. Ramesh and L.Q. Chen, Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 17 (2017), pp. 2246–2252.
  • A.N. Morozovska, E.A. Eliseev and M.D. Glinchuk, Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles. Phys. B Condens. Matter. 387 (2007), pp. 358–366.
  • J. Wang and T.Y. Zhang, Size effects in epitaxial ferroelectric islands and thin films. Phys. Rev. B 73 (2006), pp. 144107.
  • W.M. Xiong, G.L. Jiang, J.Y. Liu, Q. Sheng, W.J. Chen, B. Wang and Y. Zheng, Size-dependent and distinguishing degenerated vortex states in ferroelectric nanodots under controllable surface charge conditions. RSC Adv. 6 (2016), pp. 28393–28405.
  • W.K. Jiang, X.H. Yang and D. Peng, Intensity characterisation of polarisation vortex formation and evolution in ferroelectric nanofilms. Philos. Mag. 101 (2021), pp. 673–688.
  • W.J. Chen, Y. Zheng and B. Wang, Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci. Rep. 2 (2012), pp. 796.
  • W.J. Chen, Y. Zheng and B. Wang, Phase field simulations of stress controlling the vortex domain structures in ferroelectric nanosheets. Appl. Phys. Lett. 100 (2012), pp. 062901.
  • S. Yuan, W.J. Chen, L.L. Ma, Y. Ji, W.M. Xiong, J.Y. Liu, Y.L. Liu, B. Wang and Y. Zheng, Defect-mediated vortex multiplication and annihilation in ferroelectrics and the feasibility of vortex switching by stress. Acta Mater. 148 (2018), pp. 330–343.
  • L.V. Lich, T.Q. Bui, T. Shimada, T. Kitamura, T.G. Nguyen and V.H. Dinh, Deterministic switching of polarization vortices in compositionally graded ferroelectrics using a mechanical field. Phys. Rev. Appl. 11 (2019), pp. 054001.
  • D. Peng, X.H. Yang and W.K. Jiang, Exotic closure domains induced by oxygen vacancies in compressed BaTiO3 nanofilm. J. Appl. Phys. 128 (2020), pp. 054103.
  • D. Peng, X.H. Yang, W.K. Jiang and X.B. Tian, Molecular dynamics simulations of void-mediated polarization vortex domain switching in compressed BaTiO3 nanofilm. J. Appl. Phys. 130 (2021), pp. 034101.
  • W.L. Shu, J. Wang and T.Y. Zhang, Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J. Appl. Phys. 112 (2012), pp. 064108.
  • W.J. Chen, Y. Zheng and B. Wang, Pinning effects of dislocations on vortex domain structure in ferroelectric nanodots. Appl. Phys. Lett. 104 (2014).
  • J. Hlinka and P. Marton, Phenomenological model of a 90 degrees domain wall in BaTiO3-type ferroelectrics. Phys. Rev. B 74 (2006), pp. 104104.
  • W. Cao and L.E. Cross, Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B 44 (1991), pp. 5–12.
  • H.L. Hu and L.Q. Chen, Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81 (1998), pp. 492–500.
  • I. Naumov and A.M. Bratkovsky, Unusual polarization patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 101 (2008), pp. 107601.
  • C.H. Woo and Y. Zheng, Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A Mater. Sci. Process. 91 (2008), pp. 59–63.
  • L. Van Lich, T. Shimada, K. Nagano, H.J. Yu, J. Wang, K. Huang and T. Kitamura, Anomalous toughening in nanoscale ferroelectrics with polarization vortices. Acta Mater. 88 (2015), pp. 147–155.
  • M.J. Haun, E. Furman, S.J. Jang, H.A. McKinstry and L.E. Cross, Thermodynamic theory of PbTiO3. J. Appl. Phys. 62 (1987), pp. 3331–3338.
  • H. Dinh-Van, L.V. Lich, T.Q. Bui, T.V. Le, T.G. Nguyen, T. Shimada and T. Kitamura, Intrinsic and extrinsic effects on the electrotoroidic switching in a ferroelectric notched nanodot by a homogeneous electric field. Phys. Chem. Chem. Phys. 21 (2019), pp. 25011–25022.
  • B. Yin, H. Mao and S. Qu, A phase-field study of the scaling law in free-standing ferroelectric thin films. Nanotechnology 26 (2015), pp. 505701.
  • Y. Su, H. Kang, Y. Wang, J. Li and G.J. Weng, Intrinsic versus extrinsic effects of the grain boundary on the properties of ferroelectric nanoceramics. Phys. Rev. B 95 (2017), pp. 054121.
  • L. Van Lich, M.-T. Le, T.Q. Bui, T.-T. Nguyen, T. Shimada, T. Kitamura, T.-G. Nguyen and V.-H. Dinh, Asymmetric flux-closure domains in compositionally graded nanoscale ferroelectrics and unusual switching of toroidal ordering by an irrotational electric field. Acta Mater. 179 (2019), pp. 215–223.
  • B. Heil, A. Rosch and J. Masell, Universality of annihilation barriers of large magnetic skyrmions in chiral and frustrated magnets. Phys. Rev. B 100 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.