185
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Revealing boron adsorption on the α-Ti(0001) surface by first-principles calculations

, , &
Pages 1873-1890 | Received 07 Apr 2022, Accepted 31 May 2022, Published online: 16 Jun 2022

References

  • M. Das, K. Bhattacharya, S.A. Dittrick, C. Mandal, V.K. Balla, T.S.S. Kumar, A. Bandyopadhyay, and I. Manna, In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility, J. Mech. Behav. Biomed. 29 (2014), pp. 259–271.
  • F. Weng, C.Z. Chen, and H.J. Yu, Research status of laser cladding on titanium and its alloys: a review, Mater. Design 58 (2014), pp. 412–425.
  • W. Wu and X. Li, Research progresses on laser cladding of titanium alloys, Rare Metal Mat. Eng. 35 (2006), pp. 850–854.
  • Y.L. Yang, D. Zhang, W. Yan, and Y.R. Zheng, Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding, Opt. Laser. Eng. 48 (2010), pp. 119–124.
  • F.J. Bustillo, E. Román, and J.D. Segovia, Adsorption and thermal desorption of H2O on TiO2(001) at 250 K, Vacuum 39 (1989), pp. 659–661.
  • E. Román, F.J. Bustillo, and J.L.D. Segovia, Adsorption of methanol on the low Ti+3 point defects of the TiO2(001) surface at 300 K, Vacuum 41 (1990), pp. 40–42.
  • P. Zhang, S. Wang, J. Zhao, C. He, Y. Zhao, and P. Zhang, First-principles study of atomic hydrogen adsorption and initial hydrogenation of Zr(0001) surface, J. Appl. Phys. 113 (2013), pp. 013706.
  • J.H. Dai, R.W. Xie, Y.Y. Chen, and Y. Song, First principles study on stability and hydrogen adsorption properties of Mg/Ti interface, Phys. Chem. Chem. Phys. 17 (2015), pp. 16594–16600.
  • R. Zhang, F. Liu, X. Zhao, B. Wang, and L. Ling, First-principles study about the effect of coverage on H2 adsorption and dissociation over a Rh (100) surface, J. Phys. Chem. C 119 (2015), pp. 10355–10364.
  • H. Ma, L. Wu, C. Liu, M. Liu, C. Wang, D. Li, X.Q. Chen, J. Dong, and W. Ke, First-principles modeling of the hydrogen evolution reaction and its application in electrochemical corrosion of Mg, Acta Mater. 183 (2020), pp. 377–389.
  • J.X. Guo, L. Guan, S.B. Wang, Q.X. Zhao, Y.L. Wang, and B.T. Liu, Study of hydrogen adsorption on the Ti(0001)-(1×1) surface by density functional theory, Appl. Surf. Sci. 255 (2008), pp. 3164–3169.
  • Y. Liu, Y.C. Huang, Z.B. Xiao, and X.W. Reng, Study of adsorption of hydrogen on Al, Cu, Mg, Ti surfaces in Al alloy melt via first principles calculation, Metals. (Basel) 7 (2017), pp. 7010021.
  • J.W. Wang and H.R. Gong, Adsorption and diffusion of hydrogen on Ti, Al, and TiAl surfaces, Int. J. Hydrogen. Energ. 39 (2014), pp. 6068–6075.
  • A.N. Chibisov, Oxygen adsorption on small Ti clusters: a first-principles study, Comp. Mater. Sci. 82 (2014), pp. 131–133.
  • Y.H. Duan, S.G. Zhou, Y. Sun, and M.J. Peng, The electronic structure and phase diagram of chlorine adsorption on Mg(0001) surface, Comp. Mater. Sci. 84 (2014), pp. 108–114.
  • W.L. Zhou, T. Liu, M.C. Li, T. Zhao, and Y.H. Duan, Adsorption of bromine on Mg(0001) surface from first-principles calculations, Comp. Mater. Sci. 111 (2016), pp. 47–53.
  • Y.H. Duan, Y. Sun, and S.G. Zhou, Different coverages of fluorine adsorption on Mg(0001) surface, Comp. Mater. Sci. 72 (2013), pp. 81–85.
  • H.R. Xing, P. Hu, S.L. Li, Y.G. Zuo, J.Y. Han, X.J. Hua, K.S. Wang, F. Yang, P.F. Feng, and T. Chang, Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review, J. Mater. Sci. Technol. 62 (2021), pp. 180–194.
  • W.X. Li, C. Stampfl, and M. Scheffler, Oxygen adsorption on Ag(111): A density-functional theory investigation, Phys. Rev. B 65 (2002), pp. 075407.
  • Y.C. Huang, K.Y. Zhao, Y. Liu, X.Y. Zhang, H.-Y. Du, and X.W. Ren, Investigation on adsorption of Ar and N2 on α-Al2O3(0001) surface from first-principles calculations, Vacuum 176 (2020), pp. 109344.
  • Y. Liu, X.Y. Zhang, Z.B. Xia, and Y.C. Huang, Hydrogen adsorption on LI2-Al3X(X = Zr, Sc) surface and its diffusion in the bulk: A first-principles study, Vacuum 182 (2020), pp. 109680.
  • B.H. Gu and L.E. Lowe, Studies on the adsorption of boron on humic acids, Can. J. Soil Sci. 70 (1990), pp. 305–311.
  • K. Bi, J. Liu, and Q. Dai, First-principles study of boron, carbon and nitrogen adsorption on WC (100) surface, Appl. Surf. Sci. 258 (2012), pp. 4581–4587.
  • C. Lu, J. Yang, X. Lei, J. Huang, Z. Ye, S. Chen, and Y. Zhao, First-principles calculations on adsorption-diffusion behavior of Boron atom with tungsten surface, Comp. Mater. Sci. 183 (2020), pp. 109908.
  • L. Yang and B.D. Wirth, Energetics of boron near tungsten surfaces: a first-principles study, J. Appl. Phys. 130 (2021), pp. 015101.
  • F.J. Tuli, G. Peng, S. Hossain, K. Ninomiya, R. Ahmed, T. Nakagawa, and S. Mizuno, Formation of ordered B structure on W(100), Surf. Sci. 713 (2021), pp. 121906.
  • J.V. Rau, A. Latini, R. Teghil, B.A. De, M. Fosca, R. Caminiti, and A.V. Rossi, Superhard tungsten tetraboride films prepared by pulsed laser deposition method, ACS Appl. Mater. Inter. 3 (2011), pp. 3738–3743.
  • Y.H. Duan, Y. Wu, M.J. Peng, and H.R. Qi, The interstitial diffusion behaviors and mechanisms of boron in α-Ti and β-Ti: A first-principles calculation, Comp. Mater. Sci. 184 (2020), pp. 109866.
  • Y.H. Duan, X.Y. Wang, D. Liu, W.Z. Bao, P. Li, and M.J. Peng, Characteristics, wear and corrosion properties of borided pure titanium by pack boriding near α→β phase transition temperature, Ceram. Int. 46 (2020), pp. 16380–16387.
  • Y.H. Duan, D. Liu, B.L. He, L.S. Ma, Y.Y. Hu, and X.Q. Li, Experimental investigations of TB2 alloy by pack boriding with rare-earth oxides, Phil. Mag. Lett. 98 (2018), pp. 521–526.
  • P. Li, D. Liu, W. Bao, L. Ma, and Y. Duan, Surface characterization and diffusion model of pack borided TB2 titanium alloy, Ceram. Int. 44 (2018), pp. 18429–18437.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Mat. 14 (2002), pp. 2717–2744.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • W.E. Pickett, Pseudopotential methods in condensed matter applications, Comp. Phys. Rep. 9 (1989), pp. 115–197.
  • J. Neugebauer and M. Scheffler, Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111), Phys. Rev. B 46 (1992), pp. 16067–16080.
  • A. San-Martin and F.D. Manchester, The H-Ti (hydrogen-titanium) system, Bull. Alloy Phase Diag. 8 (1987), pp. 30–42.
  • W.X. Li, C. Stampfl, and M. Scheffler, Sub-surface oxygen and surface oxide formation at Ag(111): a density-functional theory investigation, Phys. Rev. B 67 (2003), pp. 106–110.
  • P. Błonski, A. Kiejna, and J. Hafner, Theoretical study of oxygen adsorption at the Fe(110) and (100) surfaces, Surf. Sci. 590 (2005), pp. 88–100.
  • A. Kiejna and B.I. Lundqvist, First-principles study of surface and subsurface O structures at Al(111), Phys. Rev. B 63 (2001), pp. 085405.
  • M. Nolana and S.A.M. Tofail, Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy, Biomater 31 (2010), pp. 3439–3448.
  • Y. Zhou, H.H. Xiong, Y.H. Yin, and S.W. Zhong, First principles study of surface properties and oxygen adsorption on the surface of Al3Ti intermetallic alloys, RSC Adv. 9 (2019), pp. 1752–1758.
  • L.J. Zhou, Z.F. Hou, L.M. Wu, and Y.F. Zhang, First-principles studies of lithium adsorption and diffusion on graphene with grain boundaries, J. Phys. Chem. C 118 (2014), pp. 28055–28062.
  • J.C. Slater, Atomic radii in crystals, J. Chem. Phys. 41 (1964), pp. 3199–3204.
  • J.X. Guo, L. Guan, F. Bian, Q. Li, B. Geng, Y.L. Wang, Q.X. Zhao, and B.T. Liu, First-principles calculations of hydrogen molecule adsorption on Ti (0001)-(2×1) surface, Appl. Surf. Sci. 255 (2009), pp. 7512–7516.
  • M.N. Huda and A.K. Ray, A density functional study of atomic hydrogen adsorption on plutonium layers, Physica B 352 (2004), pp. 5–17.
  • H.Q. Shi and C. Stampfl, First-principles investigations of the structure and stability of oxygen adsorption and surface oxide formation at Au(111), Phys. Rev. B 76 (2007), pp. 075327.
  • D.M. Hanson, R. Stockbauer, and T.E. Madey, Photon-stimulated desorption and other spectroscopic studies of the interaction of oxygen with a titanium (001) surface, Phys. Rev. B 24(1981), pp. 5513.
  • C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1996.
  • S.Y. Liu, F.H. Wang, Y.S. Zhou, and J.X. Shang, Ab initio study of oxygen adsorption on the Ti(0001) surface, J. Phys. Condens. Matter 19 (2007), pp. 226004.
  • M.N. Huda and L. Kleinman, Density functional calculations of the influence of hydrogen adsorption on the surface relaxation of Ti (0001), Phys. Rev. B 71 (2005), pp. 241406.
  • X.P. Chen, C.J. Tan, Q. Yang, R.S. Meng, Q.H. Liang, M. Cai, S.L. Zhang, and J.K. Jiang, Ab initio study of the adsorption of small molecules on stanene, J. Phys. Chem. C 120 (2016), pp. 13987–13994.
  • X. Sun, Q. Yang, R.S. Meng, C.J. Tanb, Q.H. Liang, J.K. Jiang, H.Y. Ye, and X.P. Chen, Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study, Appl. Surf. Sci. 404 (2017), pp. 291–299.
  • A.V. Bakulina, S. Hocker, S. Schmauder, S.S. Kulkov, and S.E. Kulkova, Impurity influence on the oxygen adsorption on Ti3Al(0001) surface, Appl. Surf. Sci. 487 (2019), pp. 898–906.
  • S. Jungsuttiwong, Y. Wongnongwa, S. Namuangruk, N. Kungwan, V. Promarak, and M. Kunaseth, Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals, Appl. Surf. Sci. 514 (2020), pp. 145900.
  • V.V. Ilyasov, L.G. Bach, A.V. Ilyasov, T.P. Zhdanova, G.A. Geguzina, H.V. Phuc, N.N. Hieu, C.V. Nguyen, and K.D. Phamg, First-principles study of W, N, and O adsorption on TiB2(0001) surface with disordered vacancies, Superlattice. Microst. 123 (2018), pp. 414–426.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.