86
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

A theoretical study of optical transport properties’ considerations in three variants of one-dimensional Fibonacci-based plasma photonic crystals

ORCID Icon, &
Pages 2412-2427 | Received 29 Dec 2021, Accepted 24 Jun 2022, Published online: 19 Jul 2022

References

  • E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58 (1987), pp. 2059–2062.
  • S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 (1987), pp. 2486–2489.
  • D. Brooks and S. Ruschin, Integrated electrooptic multielectrode tunable filter. J. Lightwave Technol 13 (1995), pp. 1508–1513.
  • P.S.J. Russell, S. Tredwell and P.J. Roberts, Full photonic bandgapes and spontaneous emission control in 1D multilayer dielectric structures. Opt. Commun 160 (1999), pp. 66–71.
  • N. Ayyanar, P.G. Kuppusamy, G. Thavasi Raja, D. Vigneswaran and A.H. Aly, Tricore photonic crystal fiber based refractive index sensor for glucose detection. IET Optoelectron. 13 (2019), pp. 118–123.
  • I.S. Amiri, B. Kumar Paul, K. Ahmed, A.H. Aly, R. Zakaria, P. Yupapin and D. Vigneswaran, Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. 61 (2019), pp. 847–852.
  • A.H. Aly, Z.A. Zaky, A.S. Shalaby, A.M. Ahmed and D. Vigneswaran, Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr 95 (2020), pp. 035510-1–035510-7.
  • A.H. Aly and F.A. Sayed, THz cut frequency and multifunction Ti2Ba2Ca2Cu3O10/GaAs photonic bandgap materials. Int. J. Mod. Phys. B 34 (2020), pp. 2050091.
  • A.H. Aly, S.E.-S. Abdel Ghany, B.M. Kamal and D. Vigneswaran, Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceram. Int. 46 (2020), pp. 365–369.
  • A.H. Aly, C. Malek and H.A. Elsayed, Transmittance properties of a quasi-periodic one-dimensional photonic crystals that incorporate nanocomposite material. Int. J. Mod. Phys. B 32 (2018), pp. 1850220.
  • A.H. Aly, Metallic and superconducting photonic crystal. J Supercond Nov Magn 21 (2008), pp. 421–425.
  • Y. Trabelsi, N. Ben Ali, A.H. Aly and M. Kanzari, Tunable high Tc superconducting photonic band gap resonators based on hybrid quasi-periodic multilayered stacks. Physica C 576 (2020), pp. 1353706.
  • C. Malek, A.H. Aly, S. Alamri and W. Sabra, Tunable PBGs with a cutoff frequency feature in Fibonacci quasi-periodic designs containing a superconductor material at THz region. Phys. Scr 96 (2021), pp. 105501.
  • A.H. Alya, D. Mohamed and M.A. Mohaseb, Metamaterial control of hybrid multifunctional high-Tc superconducting photonic crystals for 1D quasi-periodic structure potential applications. Materials Research 23 (2020), pp. e20190695.
  • Y. Trabelsi, W. Belhadj, N. Ben Ali and A.H. Aly, Theoretical study of tunable optical resonators in periodic and quasiperiodic One-dimensional photonic structures incorporating a nematic liquid crystal. Photonics. 8 (2021), pp. 150.
  • A.R. Niknam, S. Barzegar and M. Hashemzadeh, Self-focusing and stimulated brillouin back-scattering of a long intense laser pulse in a finite temperature relativistic plasma. Phys. Plasmas 20 (2013), pp. 122117.
  • M. Hashemzadeh, S.M. Baki, M. Momeni and A.R. Niknam, Resonance absorption of intense short laser pulse in near critical inhomogeneous plasma. Waves Random Complex Media 29 (2019), pp. 215–226.
  • M. Moradi and A.R. Niknam, Terahertz Dyakonov surface waves in plasma metamaterials. Opt. Lett. 43 (2018), pp. 519–522.
  • A.R. Niknam, M. Hashemzadeh and B. Shokri, Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma. Phys. Plasmas 16 (2009), pp. 033105.
  • J.D. Joannopoulos, P.R. Villeneuve and S. Fan, Photonic crystals: putting a new twist on light. Nature 386 (1997), pp. 143–149.
  • K.M. Leung and Y.F. Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. Phys. Rev. Lett. 65 (1990), pp. 2646–2649.
  • H. Hojo and A. Mase, Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals. Journal of Plasma and Fusion Research 80 (2004), pp. 89–90.
  • O. Sakai, T. Sakaguchi and K. Tachibana, Plasma photonic crystals in Two-dimensional arrays of microplasmas. Contrib. Plasma Phys. 47 (2007), pp. 96–102.
  • A.A. Goncharov, A.N. Dobrovolsky, A.V. Zatuagan and I.M. Protsenko, High-current plasma lens. IEEE Trans. Plasma Sci. 21 (1993), pp. 573–577.
  • R.J. Vidmar, On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 18 (1990), pp. 733–741.
  • T.J.J.R. Dwyer, J. Greig, D. Murphy, J. Perin, R. Pechacek and M. Raleigh, On the feasibility of using an atmospheric discharge plasma as an RF antenna. IEEE Trans. Antennas Propag. 32 (1984), pp. 141–146.
  • A. Kumar, N. Kumar and K.B. Thapa, Tunable broadband reflector and narrowband filter of a dielectric and magnetized cold plasma photonic crystal. Eur. Phys. J. Plus 133 (2018), pp. 250.
  • X.K. Kong, S.B. Liu, H.F. Zhang and C.Z. Li, A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma. Phys. Plasmas 17 (2010), pp. 103506.
  • H.A. Elsayed, Quasiperiodic photonic crystals for filtering purpose by means of the n doped semiconductor material. Phys. Scr. 95 (2020), pp. 065504.
  • A. Mehaney, M.M. Abadla and H.A. Elsayed, 1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors. J. Mol. Liq. 322 (2021), pp. 114978.
  • M.M. Abadla, H.A. Elsayed and A. Mehaney, Sensitivity enhancement of annular one dimensional photonic crystals temperature sensors with nematic liquid crystals. Phys. Scr. 95 (2020), pp. 085508.
  • C. Nayak, A. Aghajamali, F. Scotognell and A. Saha, Effect of standard deviation, strength of magnetic field and electron density on the photonic band gap of an extrinsic disorder plasma photonic structure. Opt. Mater. 72 (2017), pp. 25–30.
  • S. Liu, W. Hong and N. Yuan, Finite-difference time-domain analysis of unmagnetized plasma photonic crystals. Int. J. Infrared Millimeter Waves 27 (2006), pp. 403–423.
  • X.K. Kong, S.B. Liu, H.F. Zhang, C.Z. Li and B.R. Bian, Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals. J. Opt 13 (2011), pp. 035101.
  • H.F. Zhang, S.-B. Liu and X.-K. Kong, Dispersion properties of three-dimensional plasma photonic crystals in diamond lattice arrangement. J. Lightwave Technol 31 (2013), pp. 1694–1702.
  • Y. Ma, H. Zhang and C.X. Hu, Tunable omnidirectional band gap and polarization splitting in one-dimensional magnetized plasma photonic crystals with a quasi-periodic topological structure. J. Opt 22 (2020), pp. 025101.
  • H.F. Zhang, S.-B. Liu and X.-K. Kong, Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary magnetic declination. Phys. Plasmas 19 (2012), pp. 122103.
  • H. Mehdian, Z. Mohammadzahery and A. Hasanbeigi, The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects. Phys. Plasmas 21 (2014), pp. 012101.
  • A. Aghajamali, A. Zare and C.-J. Wu, Analysis of defect mode in a one-dimensional symmetric double-negative photonic crystal containing magnetized cold plasma defect. Appl. Opt. 54 (2015), pp. 8602–8606.
  • A.H. Aly, A.A. Ameen, H.A. ElSayed and S.H. Mohamed, Photonic crystal defective superconductor and black body radiations. Opt. Quantum Electron. 50 (2018), pp. 1–12.
  • H.A. Elsayed, A. Sharma, Z.A. Alrowaili and T.A. Taha, Theoretical investigation of pressure sensing using a defect of polystyrene inside photonic crystals. Mater. Chem. Phys. 270 (2021), pp. 124853.
  • C. Nayaka, A. Aghajamalib, T. Alamfard and A. Saha, Tunable photonic band gaps in an extrinsic Octonacci magnetized cold plasma quasicrystal. Phys. B 525 (2017), pp. 41–45.
  • H. Mehdian, Z. Mohammadzahery and A. Hasanbeigi, Magneto-optical properties of one-dimensional conjugated photonic crystal heterojunctions containing plasma layers. Appl. Opt. 54 (2015), pp. 7949–7956.
  • O. Sakai, T. Sakaguchi and K. Tachibana, Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas. Appl. Phys. Lett 87 (2005), pp. 241505.
  • H.A. Elsayed and M.M. Abadla, Transmission investigation of onedimensional Fibonacci-based quasi-periodic photonic crystals including nanocomposite material and plasma. Phys. Scr 95 (2020), pp. 035504.
  • M. Amini, M. Soleimani and M.H. Ehsani, Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems. Superlattices Microstruct. 112 (2017), pp. 680–687.
  • X.B. Cai and X.F. Xuan, Optical harmonic generation in a Fibonacci dielectric super-lattice of LiNbO3. Opt. Commun 240 (2004), pp. 227–233.
  • D. Lusk, I. Abdulhalim and F. Placido, Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal. Opt. Commun 198 (2001), pp. 273–279.
  • M. Kohmoto, B. Sutherland and K. Iguchi, Localization in optics: quasiperiodic media. Phys. Rev. Lett 58 (1987), pp. 2436–2438.
  • R. Merlin, K. Bajema, R. Clarke, F.Y. Juang and P.K. Bhattacharya, Quasiperiodic GaAs-AlAS heterostructure. Phys. Rev. Lett 55 (1985), pp. 1768–1770.
  • J.B. Sokoloff, Anomalous electrical conduction in quasicrystals and Fibonacci lattices. Phys. Rev. Lett 58 (1987), pp. 2267–2270.
  • T. Hattori, N. Tsurumachi, S. Kawato and H. Nakatsuka, Photonic dispersion relation in a one-dimensional quasicrystal. Phys. Rev. B 50 (1994), pp. 4220–4223.
  • L.D. Negro, C.J. Otom, Z. Gaburro, L. Pavesi, P. Johonson, A. Lagendijk, R. Righ-ini, M. Colocci and D.S. Wiersma, Light transport through the band-edge states of Fibonacci quasicrystals. Phys. Rev. Lett 90 (2003), pp. 055501-1–055501-4.
  • Y. Ma, H. Zhang, H. Zhang, T. Liu and W. Li, Nonreciprocal properties of 1D magnetized plasma photonic crystals with the Fibonacci sequence. Plasma Sci. Technol 21 (2019), pp. 015001.
  • Z.Y. Li and Y. Xia, Omnidirectional absolute band gaps in two-dimensional photonic crystals. Phys. Rev. B 64 (2001), pp. 153108.
  • J.N. Winn, Y. Fink, S. Fan and J.D. Joannopulos, Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett 23 (1998), pp. 1573–1575.
  • S.D. Hart, G.R. Maskaly, B. Temelkuran, P.H. Prideaux, J.D. Joannopulos and Y. Fink, External reflection from omnidirectional dielectric mirror fibers. Science 296 (2002), pp. 510–513.
  • X.-K. Kong, S.-B. Liu, H.-F. Zhang, B.-R. Bian, H.-C. Zhao and H. Yang, A broadband omnidirectional absorber based on a hetero-structure composed of a collision plasma and a ternary plasma Bragg mirror. J. Electromagn. Waves Appl 27 (2013), pp. 945–952.
  • H.-F. Zhang, J.-P. Zhen and W.-P. He, Omnidirectional photonic band gaps enhanced by Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals. Opt.-Int. J. Light Electron Opt 124(20) (2013), pp. 4182–4187.
  • H.-F. Zhang, S.-B. Liu, X.-K. Kong, L. Zou, C.-Z. Li and W.-S. Qing, Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer. Phys. Plasmas 19 (2012), pp. 022103.
  • X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu and J. Zi, Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures. Appl. Phys. Lett 80 (2002), pp. 4291–4293.
  • E. Xifre-Perez, L.F. Marsal, J. Pallares and J. Ferre Borrull, Porous silicon mirrors with enlarged omnidirectional band gap. J. Appl. Phys 97 (2005), pp. 064503.
  • Z. Naderi Dehnavi, H. Ranjbar Askari, M. Malekshahi and D. Dorranian, Investigation of tunable omnidirectional bandgap in 1D magnetized full plasma photonic crystals. Phys. Plasmas 24 (2017), pp. 093517.
  • A. Aghajamali and M. Barati, Effects of normal and oblique incidence on zero-n gap in periodic lossy multilayer containing double-negative materials. Phys. B 407 (2012), pp. 1287–1291.
  • L. Zhang, Y. Zhang, L. He, Z. Wang, H. Li and H. Chen, Zero- n gaps of photonic crystals consisting of positive and negative index materials in microstrip transmission lines. J. Phys. D. Appl. Phys 40 (2007), pp. 2579–2583.
  • P. Yeh, Optical waves in layered media. Wiley Series in Pure and Applied Optics (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.