62
Views
1
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Ferroelectric nanocomposites from potassium dihydrogen phosphate with oxidised multi-walled carbon nanotubes: preparation, composition effects, structure, ferroelectricity and electrical properties

ORCID Icon &
Pages 2444-2458 | Received 06 Jun 2022, Accepted 02 Aug 2022, Published online: 19 Aug 2022

References

  • K. Dörr, C. Thiele, J.-W. Kim, O. Bilani, K. Nenkov and L. Schultz, Approaches towards ferroelectric control of thin film magnetism. Philos. Mag. Lett 87 (2007), pp. 269–278. doi:10.1080/09500830701213387.
  • M. Benyoussef, M. Zannen, J. Belhadi, B. Manoun, Z. Kutnjak, D. Vengust, M. Spreitzer, M. El Marssi and A. Lahmar, Structural, dielectric, and ferroelectric properties of Na0.5(Bi1-xNdx)0.5TiO3 ceramics for energy storage and electrocaloric applications. Ceram. Int 47 (2021), pp. 26539–26551. doi:10.1016/j.ceramint.2021.06.068.
  • Y.-P. Jiang, T.-C. Yang, T.-H. Lin, C.-M. Ho, S.-H. Chan, M.-C. Wu and J.-C. Wang, Layer-dependent solvent vapor annealing on stacked ferroelectric P(VDF-TrFE) copolymers for highly efficient nanogenerator applications. Polymer 204 (2020), pp. 122822. doi:10.1016/j.polymer.2020.122822.
  • X. Li, J. Li, X. Wang, J. Hu, X. Fang, X. Chu, Z. Wei, J. Shan and X. Ding, Preparation, applications of two-dimensional graphene-like molybdenum disulfide. Integr. Ferroelectr 158 (2014), pp. 26–42. doi:10.1080/10584587.2014.956611.
  • L. Yang, Y. Xiong, W. Guo, M. Zhou, K. Song, P. Xiao and G. Cao, Manipulation of charge transport in ferroelectric-semiconductor hybrid for photoelectrochemical applications. Nano Energy 44 (2018), pp. 63–72. doi:10.1016/j.nanoen.2017.11.066.
  • R. Gaur, N. Sharma, S. Kharbanda and S. Singh, Enhanced ferroelectric and electrocaloric properties in CuO-modified lead-free (Na0.5K0.5)NbO3 ceramics for solid-state cooling application. Mater. Sci. Eng. B 261 (2020), p. 114767. doi:10.1016/j.mseb.2020.114767.
  • Q. Guo, X. Meng, F. Li, F. Xia, P. Wang, X. Gao, J. Wu, H. Sun, H. Hao, H. Liu and S. Zhang, Temperature-insensitive PMN-PZ-PT ferroelectric ceramics for actuator applications. Acta Mater. 211 (2021), p. 116871. doi:10.1016/j.actamat.2021.116871.
  • M.S. Alkathy, M.H. Lente and J.A. Eiras, Bandgap narrowing of Ba0.92Na0.04Bi0.04TiO3 ferroelectric ceramics by transition metals doping for photovoltaic applications, Mat. Chem. Phys 257 (2021), p. 123791. doi:10.1016/j.matchemphys.2020.123791.
  • M.P. Rao, S. Musthafa, J.J. Wu and S. Anandan, Facile synthesis of perovskite LaFeO3 ferroelectric nanostructures for heavy metal ion removal applications. Mat. Chem. Phys 232 (2019), pp. 200–204. doi:10.1016/j.matchemphys.2019.04.086.
  • A. Dwivedi, K.N. Singh, M. Hait and P.K. Bajpai, Ferroelectric relaxor behavior and dielectric relaxation in strontium barium niobate – a lead-free relaxor ceramic material. Eng. Sci (2022) (in press) doi:10.30919/es8d760.
  • Z. Wang, M. Yang and H. Zhang, Strain engineering on electrocaloric effect in PbTiO3 and BaTiO­3. Adv. Compos. Hybrid Mater 4 (2021), pp. 1239–1247. doi:10.1007/s42114-021-00257-6.
  • H.-C. Liu, S.-M. Zeng, R. Li, Y.-P. Jiang, Q.-X. Liu and X.-G. Tang, Multiferroic properties and resistive switching behaviors of Ni0.5Zn0.5Fe2O4 thin films. Adv. Compos. Hybrid Mater 4 (2021), pp. 1–7. doi:10.1007/s42114-021-00207-2.
  • Z. Wang, Y. Gao, Y. Ma, X. Xie, M. Yang and H. Zhang, Enhanced electrocaloric effect within a broad temperature range in lead-free polymer composite films by blending the rare-earth doped BaTiO3 nanopowders. Adv. Compos. Hybrid Mater 4 (2021), pp. 469–477. doi:10.1007/s42114-021-00252-x.
  • D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su, C. Liu, Y. Li, B. Bin Xu, V. Murugadoss, N. Naik, S.M. El-Bahy, Z.M. El-Bahy, M. Huang and Z. Guo, Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano Micro Lett 14(1–19) (2022), p. 118. doi:10.1007/s40820-022-00863-z.
  • T. Gao, H. Rong, K.H. Mahmoud, J. Ruan, S.M. El-Bahy, A.A. Faheim, Y. Li, M. Huang, M.A. Nassan and R. Zhao, Iron/silicon carbide composites with tunable high-frequency magnetic and dielectric properties for potential electromagnetic wave absorption. Adv. Compos. Hybrid Mater 5 (2022), pp. 1158–1167. doi:10.1007/s42114-022-00507-1.
  • Y. Zhao, F. Liu, K. Zhu, S. Maganti, Z. Zhao and P. Bai, Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv. Compos. Hybrid Mater 5 (2022), pp. 1537–1547. doi:10.1007/s42114-022-00430-5.
  • G. Li, L. Wang, X. Lei, Z. Peng, T. Wan, S. Maganti, M. Huang, V. Murugadoss, I. Seok, Q. Jiang, D. Cui, A. Alhadhrami, M.M. Ibrahim and H. Wei, Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv. Compos. Hybrid Mater 5 (2022), pp. 853–863. doi:10.1007/s42114-022-00501-7.
  • J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin, M. Huang, J. Guo, S.A. Alsareii, H. Algadi and M. Kathiresan, Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv. Compos. Hybrid Mater 5 (2022), pp. 641–650. doi:10.1007/s42114-022-00473-8.
  • F. Ji, M. Xu, B. Wang, C. Wang, X. Li, Y. Zhang, M. Zhou, W. Huang, Q. Wei, G. Tang and J. He, Preparation of methoxyl poly(ethylene glycol) (MPEG)-coated carbonyl iron particles (CIPs) and their application in potassium dihydrogen phosphate (KDP) magnetorheological finishing (MRF). Appl. Surf. Sci 353 (2015), pp. 723–727. doi:10.1016/j.apsusc.2015.06.063.
  • Q. Wang, W. Cong, Z.J. Pei, H. Gao and R. Kang, Rotary ultrasonic machining of potassium dihydrogen phosphate (KDP) crystal: An experimental investigation on surface roughness. J. Manuf. Process 11 (2009), pp. 66–73. doi:10.1016/j.jmapro.2009.09.001.
  • N.I. Uskova, E.V. Charnaya, D.Y. Podorozhkin, S.V. Baryshnikov and A.Y. Milinskiy, Impact of opal nanoconfinement on the ferroelectric transition in deuterated KDP. Results Phys. 26 (2021), p. 104354. doi:10.1016/j.rinp.2021.104354.
  • A.Y. Milinskiy, S.V. Baryshnikov and E.V. Charnaya, Dielectric studies of ferroelectric nanocomposites with KDP. Ferroelectrics 501 (2016), pp. 109–113. doi:10.1080/00150193.2016.1201384.
  • A. Ciżman, T. Marciniszyn, E. Rysiakiewicz-Pasek, A. Sieradzki, T.V. Antropova and R. Poprawski, Size effects in KDP-porous glass ferroelectric nanocomposites. Phase Transit. 86 (2013), pp. 910–916. doi:10.1080/01411594.2012.745537.
  • A. Chafidz, F. Hamdan Latief, A.S. Al-Fatesh and M. Kaavessina, Crystallization and thermal stability of polypropylene/multi-wall carbon nanotube nanocomposites. Philos. Mag. Lett. 96 (2016), pp. 367–374. doi:10.1080/09500839.2016.1213441.
  • G.M.T. Basha and B. Venkateshwarlu, Influence of carbon nanotubes reinforcement on characteristics of thermally sprayed ceramic coatings. Surf. Rev. Lett 28 (2020), p. 2050052. doi:10.1142/S0218625X20500523.
  • Y. He, M. Zhou, M.H.H. Mahmoud, X. Lu, G. He, L. Zhang, M. Huang, A.Y. Elnaggar, Q. Lei, H. Liu, C. Liu and I.H.E. Azab, Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv. Compos. Hybrid Mater (2022) (in press). doi:10.1007/s42114-022-00525-z.
  • J. Liu, H. Duan, W. Xu, J. Long, W. Huang, H. Luo, J. Li and Y. Zhang, Branched sulfonated polyimide/s-MWCNTs composite membranes for vanadium redox flow battery application. Int. J. Hydrog. Energy 46 (2021), pp. 34767–34776. doi:10.1016/j.ijhydene.2021.08.058.
  • K. Rengaswamy, V.K. Asapu, R. Sundara and S. Venkatachalam, Effective attenuation of electromagnetic waves by Ag adorned MWCNT-polybenzoxazine composites for EMI shielding application. Compos. Sci. Technol 223 (2022), p. 109411. doi:10.1016/j.compscitech.2022.109411.
  • Z. Sun, H. Qi, M. Chen, S. Guo, Z. Huang, S. Maganti, V. Murugadoss, M. Huang and Z. Guo, Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng. Sci 18 (2022), pp. 59–74. doi:10.30919/es8d588.
  • S. Tang, Carbon nanotubes for active refrigeration and cooling in micro and mesoscale systems. Eng. Sci 18 (2022), pp. 263–270. doi:10.30919/es8d578.
  • A.G. Sanchez, E. Prokhorov, G. Luna-Barcenas, J. Hernández-Vargas, R. Román-Doval, S. Mendoza and H. Rojas-Chávez, Chitosan-hydroxyapatite-MWCNTs nanocomposite patch for bone tissue engineering applications. Mater. Today Commun 28 (2021), p. 102615. doi:10.1016/j.mtcomm.2021.102615.
  • S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu, F. Hou, J. Ni, C. Zhu, T. Li, Y. Wang, V. Murugadoss, G.A.M. Mersal, M.M. Ibrahim, Z.M. El-Bahy, M. Huang and Z. Guo, Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol 126 (2022), pp. 152–160. doi:10.1016/j.jmst.2022.03.012.
  • H. Zhang, X. Ding, S. Wang, Y. Huang, X.-F. Zeng, S. Maganti, Q. Jiang, M. Huang, Z. Guo and D. Cao, Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng. Sci 18 (2022), pp. 320–328. doi:10.30919/es8d649.
  • K. Huang, Y. Wu, J. Liu, G. Chang, X. Pan, X. Weng, Y. Wang and M. Lei, A double-layer carbon nanotubes/polyvinyl alcohol hydrogel with high stretchability and compressibility for human motion detection. Eng. Sci 17 (2022), pp. 319–327. doi:10.30919/es8d625.
  • Y. Hui, W. Xie and H. Gu, Reduced graphene oxide/nanocellulose/amino-multiwalled carbon nanotubes nanocomposite aerogel for excellent oil adsorption. ES Food Agrofor 5 (2021), pp. 38–44. doi:10.30919/esfaf531.
  • M.J. Islam, M.J. Rahman and T. Mieno, Safely functionalized carbon nanotube-coated jute fibers for advanced technology. Adv. Compos. Hybrid Mater 3 (2020), pp. 285–293. doi:10.1007/s42114-020-00160-6.
  • O. Duman, C. Özcan, T. Gürkan Polat and S. Tunç, Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites. Environ. Pollut 244 (2019), pp. 723–732. doi:10.1016/j.envpol.2018.10.071.
  • A.S. Pawar, S.S. Garje and N. Revaprasadu, Synthesis and characterization of CdS nanocrystallites and OMWCNT-supported cadmium sulfide composite and their photocatalytic activity under visible light irradiation. Mater. Chem. Phys 183 (2016), pp. 366–374. doi:10.1016/j.matchemphys.2016.08.040.
  • H.T. Nguyen and P.T.B. Thao, Preparation, composition, phase transition and electrical conductivity of two novel ferroelectric composites from Rochelle salt filled with pristine and oxidized MWCNT. Ferroelectrics 585 (2021), pp. 274–283. doi:10.1080/00150193.2021.2017713.
  • H.T. Nguyen and P.T.B. Thao, Influence of moisture on ferroelectric–paraelectric phase transition of a composite containing oxidized MWCNT and TGS. Ferroelectr. Lett. Sect 48 (2021), pp. 13–19. doi:10.1080/07315171.2021.1923116.
  • H.T. Nguyen and M.T. Chau, Structural and dielectric studies of three-phase composite containing multiwalled carbon nanotubes, nanodispersed silica and KDP. Phase Transit. 93 (2020), pp. 1080–1088. doi:10.1080/01411594.2020.1839753.
  • H. Khani and O. Moradi, Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J. Nanostructure Chem 3 (2013), p. 73. doi:10.1186/2193-8865-3-73.
  • J. Tao and S.-a. Cao, Flexible high dielectric thin films based on cellulose nanofibrils and acid oxidized multi-walled carbon nanotubes. RSC Adv. 10 (2020), pp. 10799–10805. doi:10.1039/C9RA10915C.
  • T.V.H. Luu, M.D. Luu, N.N. Dao, V.T. Le, H.T. Nguyen and V.D. Doan, Immobilization of C/Ce-codoped ZnO nanoparticles on multi-walled carbon nanotubes for enhancing their photocatalytic activity. J. Dispers. Sci. Technol 42 (2021), pp. 1311–1322. doi:10.1080/01932691.2020.1740728.
  • D. Vorontsov, S. Filonenko, A. Kanak, G. Okrepka and Y. Khalavka, Charge directed assembly of CdTe/CdS nanoparticles inside monocrystalline KH2PO4. CrystEngComm 19 (2017), pp. 6804–6810. doi:10.1039/C7CE01688C.
  • R.M. Hill and S.K. Ichiki, Infrared absorption by hydrogen bonds in single crystal KH2PO4, KD2PO4, and KH2AsO4. J. Chem. Phys 48 (1968), pp. 838–842. doi:10.1063/1.1668722.
  • M. Trainer, Ferroelectrics and the Curie-Weiss law. Eur. J. Phys 21 (2000), pp. 459–464. doi:10.1088/0143-0807/21/5/312.
  • N.I. Uskova, D.Y. Podorozhkin, E.V. Charnaya, S.V. Baryshnikov, A.Y. Milinskiy, D.Y. Nefedov, A.S. Bugaev, M.K. Lee and L.J. Chang, NMR and dielectric studies of ferroelectric nanocomposites with KDP. Ferroelectrics 514 (2017), pp. 50–60. doi:10.1080/00150193.2017.1357980.
  • H.T. Nguyen and B.D. Mai, Study on structure and phase transition of an eco-friendly ferroelectric composite prepared from cellulose nanoparticles mixed with Rochelle salt. Phase Transit. 92 (2019), pp. 831–838. doi:10.1080/01411594.2019.1650931.
  • H.T. Nguyen, B.D. Mai and A.Y. Milinskiy, Dielectric properties of an eco-friendly ferroelectric nanocomposite from cellulose nanoparticles mixed with Rochelle salt. Ferroelectrics 560 (2020), pp. 27–32. doi:10.1080/00150193.2020.1722879.
  • D.-H. Kim and J.-J. Kim, Dynamic scaling of hysteresis loop areas in ferroelectric KDP crystal. Ferroelectrics 222 (1999), pp. 285–293. doi:10.1080/00150199908014828.
  • T. Vijayakanth, A.K. Srivastava, F. Ram, P. Kulkarni, K. Shanmuganathan, B. Praveenkumar and R. Boomishankar, A flexible composite mechanical energy harvester from a ferroelectric organoamino phosphonium salt. Angew. Chem.Int. Ed 57 (2018), pp. 9054–9058. doi:10.1002/anie.201805479.
  • A.N. Papathanassiou, Novel feature of the universal power law dispersion of the ac conductivity in disordered matter. J. Non Cryst. Solids 352 (2006), pp. 5444–5445. doi:10.1016/j.jnoncrysol.2006.08.019.
  • B.D. Mai, H.T. Nguyen and M.T. Chau, Effects of hydrogen bonds on dielectric relaxation of composites based on hydrogen-bonded ferroelectrics. Phase Transit. 93 (2020), pp. 228–235. doi:10.1080/01411594.2019.1709122.
  • M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel and A. Serghei, Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J. Chem. Phys 142 (2015), p. 194703. doi:10.1063/1.4919877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.