182
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural, electronic and magnetic properties of the double perovskite Ba2GdNbO6 with octahedral tilting effect: first-principles calculations

, , , & ORCID Icon
Pages 67-86 | Received 09 Jun 2022, Accepted 28 Aug 2022, Published online: 19 Sep 2022

References

  • F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds, Pergam on Press, Oxford, 1969.
  • P.W. Barnes. Exploring structural changes and distortions in quaternary perovskites and defect pyrochlores using powder diffraction techniques, Thesis (PhD), The Ohio State University, 2003.
  • C.J. Howard and H.T. Stokes, Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B 54 (1998), pp. 782.
  • S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase and T. Ma, First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I). J. Phys. Chem. Solid 117 (2018), pp. 117–121.
  • L. Zhang, Y. Fang, L. Sui, J. Yan, K. Wang, K. Yuan, W.L. Mao and B. Zou, Tuning emission and electron–phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure. ACS Energy Lett. 4 (2019), pp. 2975–2982.
  • E.T. McClure, M.R. Ball, W. Windl and P.M. Woodward, Cs2agbix6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28 (2016), pp. 1348–1354.
  • J. Zhou, X. Rong, M.S. Molokeev, X. Zhang and Z. Xia, Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6via a combined computational-experimental approach. J. Mater. Chem. A 6 (2018), pp. 2346–2352.
  • J.C. Dahl, W.T. Osowiecki, Y. Cai, J.K. Swabeck, Y. Bekenstein, M. Asta, E.M. Chan and A.P. Alivisatos, Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem. Mater. 31 (2019), pp. 3134–3143.
  • C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen and L. Xiao, The Dawn of lead-free perovskite solar cell: highly stable double perovskite Cs 2 AgBiBr6 film. Adv. Sci. 5 (2018), pp. 1700759.
  • G. García-Espejo, D. Rodríguez-Padron, R. Luque, L. Camacho and G. de Miguel, Mechanochemical synthesis of three double perovskites: Cs2AgBiBr6, (CH3NH3)2TlBiBr6 and Cs2AgSbBr6. Nanoscale. 11 (2019), pp. 16650–16657.
  • Y. Liu, A. Nag, L. Manna and Z. Xia, Lead-free double perovskite Cs2AgInCl6. Angew. Chem. Int. Ed. 60 (2021), pp. 11592–11603.
  • N.T. Mahmoud, J.M. Khalifeh, A.A. Mousa, H.K. Juwhari and B.A. Hamada, The energetic, electronic and magnetic structures of Fe2−xCoxVSn alloys: ab-initio calculations. Phys. B Condens. Matter. 430 (2013), pp. 58.
  • M.S. Abu-Jafar, V. Leonhardi, R. Jaradat, A.A. Mousa, S. Al-Qaisi, N.T. Mahmoud, B. Ahmed, R. Khenata and A. Bouhemadou, Structural, electronic, mechanical, and dynamical properties of scandium carbide. Results Phys. 21 (2021), pp. 103804.
  • A.A. Mousa, R. Jaradat, M. Abu-Jafar, N.T. Mahmoud, S. Al-Qaisi, J.M. Khalifeh and H. Abusaimeh, Theoretical investigation of the structural, electronic, and elastic properties of TM3In(TM = Pd and Pt) intermetallic compounds. AIP Adv. 10 (2020), pp. 065317.
  • N.T. Mahmoud, A.A. Mousa and J.M. Khalifeh, Thermoelectric properties of ALiF3 (A = Ca, Sr and Ba): first-principles calculation. Jordan J. Phys. 13 (2020), pp. 79–86.
  • N.T. Mahmoud, B.R. Almalaji, A.A. Mousa and J.M. Khalifeh, Effect of the“3-d” band filling on the structural, electronic, magnetic and optical properties of TMScO3 perovskite. Chin. J. Phys. 65 (2020), pp. 500–512.
  • N.T. Mahmoud, J.M. Khalifeh and A.A. Mousa, Ab-initio investigations of the structural, electronic, magnetic and optical properties of Ca1-xEuxLiF3 fluoroperovskite. Comput. Condens. Matter 21 (2019), pp. e00432.
  • N.T. Mahmoud, J.M. Khalifeh and A.A. Mousa, Effects of rare earth element Eu on structural, electronic, magnetic, and optical properties of fluoroperovskite compounds SrLiF3: first principles calculations. Phys. B Condens. Matter 564 (2019), pp. 37–44.
  • N.T. Mahmoud, A.A. Mousa and A.A. Shaheen, Effect of doping titanium ions on semi-conducting behavior, photovoltaic, and thermoelectric perovskite-type oxides VSc1−xTixO3: Ab-inito study. Int. J. Energy Res 46 (2022), pp. 12184–12206.
  • H. Boschker, J. Kautz, E.P. Houwman, W. Siemons, D.H.A. Blank, M. Huijben, G. Koster, A. Vailionis and G. Rijnders, High-Temperature magnetic insulating phase in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 109 (2012), pp. 157207.
  • J. Kurian, K.V.O. Nair, P.K. Sajith, M.A. John and J. Koshy, Bi(2223) thick films (TC(0) = 109 K) on Ba2GdNbO6: a new perovskite ceramic substrate for BSCCO superconductor. Appl. Supercond. 6 (1998), pp. 259–265.
  • K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395 (1998), pp. 677.
  • R.L. Moreira, L. Abdul Khalam, T. Sebastian Mailadil and A. Dias, Raman-spectroscopic investigations on the crystal structure and phonon modes of Ba(RE1/2Ta1/2)O3 microwave ceramics. J. Eur. Ceram. Soc. 27 (2007), pp. 2803.
  • W.K. Choo, H.J. Kim, J.H. Yang, H. Lim, J.Y. Lee, J.R. Kwon and C.H. Chun, X-ray and dielectric studies of the phase transitions in Pb(Yb 1/2Nb 1/2)O 3-PbTiO 3 ceramics. Jpn. J. Appl. Phys. 32 (1993), pp. 4249.
  • W.T. Fu and D.J.W. IJdo, New insight into the symmetry and the structure of the double perovskites Ba2LnNbO6 (Ln = lanthanides and Y). J. Solid State Chem. 179 (2006), pp. 1022–1028.
  • P.J. Saines, B.J. Kennedy and M.M. Elcombe, Structural phase transitions and crystal chemistry of the series Ba2LnB'O6 (Ln = lanthanide and B’ = Nb5+ or Sb5+). J. Solid State Chem. 180(2) (2007), pp. 401–409.
  • U. von Wittmann, G. Rauser and S. Kemmler-Sack, Über die ordnung von BIII und MV in perowskiten vom Typ BIIIMVO6 (AII = Ba, Sr; MV = Sb, Nb, Ta). Allg. Chem. 482 (1981), pp. 143–153.
  • P.M. Woodward, Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 53 (1997), pp. 32.
  • C.J. Howard, B.J. Kennedy and P.M. Woodward, Ordered double perovskites - a group-theoretical analysis. Acta Crystallogr. B 59 (2003), pp. 463–471.
  • S. Pei, J.D. Jorgensen, B. Dabrovski, D.G. Hinks, D.R. Richards, A.W. Mitchell, J.M. Newsam, S.K. Sinha, D. Vakmin and A.J. Jacobson, Structural phase diagram of the Ba1−xKxBiO3 system. Phys. Rev. B 41 (1990), pp. 4126.
  • V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14 (1926), pp. 477.
  • A.E. Lavat and E.J. Baran, IR-spectroscopic characterization of A2BB′O6 perovskites. Vib. Spectrosc. 32(2) (2003), pp. 167–174.
  • S. Dimitrovska-Lazova, S. Aleksovska and I. Kuzmanovski, Prediction of the unit cell edge length of cubic A 22+ BB′O6 perovskites by multiple linear regression and artificial neural networks. Central Eur. J. Chem. 3(1) (2005), pp. 198–215.
  • C. Tian, A.C. Wibowo, H.C. zur Loye and M.H. Whangbo, On the magnetic insulating states, spin frustration, and dominant spin exchange of the ordered double-perovskites Sr2CuOsO6 and Sr2NiOsO6: density functional analysis. Inorg. Chem. 50 (2011), pp. 4142–4148.
  • M. Naseri, D.R. Salahub, S. Amirian and M.A. Rashid, Computational investigation of Ba2ZrTiO6 double perovskite for optoelectronic and thermoelectric applications. J. Solid State Chem. 314 (2022), pp. 123385.
  • K.W. Lee and W.E. Pickett, Half semimetallic antiferromagnetism in the Sr2CrTO6 system (T = Os, Ru). Phys. Rev. B 77 (2008), pp. 115101.
  • N. Zu, Q. Zhang, J. Hao, M. Zhang, J. Li, X. Liu and R. Li, First-principles study on giant magneto-optical Kerr effect in double perovskites Sr2BB′O6 (B = Cr, Mo, B′ = W, Re, Os). J. Solid State Chem. 312 (2022), pp. 123274.
  • Y. Yahua, H.L. Feng, M.P. Ghimire, Y. Matsushita, Y. Tsujimoto, J. He, M. Tanaka, Y. Katsuya and K. Yamaura, High-pressure synthesis, crystal structures, and magnetic properties of 5d double-perovskite oxides Ca2MgOsO6 and Sr2MgOsO6. Inorg. Chem. 54 (2015), pp. 3422–3431.
  • D.K. Yadav, S.R. Bhandari, B.P. Belbase, G.C. Kaphle, D.P. Rai and M.P. Ghimire, Effects of electron-correlation, spin-orbit coupling, and modified Becke-Johnson potential in double perovskites SrLaBB′O6(B  =  Ni, Fe; B′  =  Os, Ru). Comput. Mater. Sci. 170 (2019), pp. 109168.
  • H.L. Feng, S. Calder, M.P. Ghimire, Y. Yuan, Y. Shirako, Y. Tsujimoto, Y. Matsushita, Z. Hu, C.Y. Kuo, L.H. Tjeng, T.W. Pi, Y.L. Soo, J. He, M. Tanaka, Y. Katsuya, M. Richter and K. Yamaura, Ba2nioso6: A Dirac-Mott insulator with ferromagnetism near 100 K. Phy. Rev. B 94 (2016), pp. 235158.
  • P. Blaha, K. Schwarz, P. Sorantin and S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59 (1990), pp. 339.
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964), pp. B864.
  • K.M. Wong, S.M. Alay-e-Abbas, A. Shaukat, Y. Fang and Y. Lei, First-principles investigation of the size-dependent structural stability and electronic properties of O-vacancies at the ZnO polar and non-polar surfaces. J. Appl. Phys. 113 (2013), pp. 014304.
  • K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat and Y. Lei, Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: an investigation combining confocal microscopy and first principles calculations. J. Appl. Phys. 114 (2013), pp. 034901.
  • V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk and G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48 (1993), pp. 16929.
  • F. Tran, J. Kunes, P. Novak, P. Blaha and L.D. Marks, Force calculation for orbital-dependent potentials with FP-(L)APW + lo basis sets. Comput. Phys. Commun. 179 (2008), pp. 784–790.
  • S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 57 (1998), pp. 1505.
  • R.F. Sabiryanov and S.S. Jaswal, Bulk and surface 4f states of Gd. Phys. Rev. B 55 (1997), pp. 4117.
  • B.N. Harmon, V.P. Antropov, A.I. Liechtenstein, I.V. Solovyev and V.I. Anisimov, Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56 (1995), pp. 1521–1524.
  • B. Merabet, A.J.H. Almaliky, A.H. Reshak, M.M. Ramli and J. Bila, Dielectric absorption correlated to ferromagnetic behavior in (Cr, Ni)-codoped 4H–SiC for microwave applications. J. Mol. Struct. 1248 (2022), pp. 131462.
  • H. Yu, H. Huang, A.H. Reshak, S. Auluck, L. Liu, T. Ma and Y. Zhang, Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Appl. Catal. B: Environ. 284 (2021), pp. 119709.
  • R. Ullah, A.H. Reshak, M.A. Ali, A. Khan, G. Murtaza, M. AL-Anazy, H. Althib and T.H. Flemban, Pressure-dependent elasto-mechanical stability and thermoelectric properties of MYbF3 (M = Rb, Cs) materials for renewable energy. Int. J. Energy Res. 45 (2021), pp. 8711–8723.
  • S. Tabassam, A.H. Reshak, G. Murtaza, S. Muhammad, A. Laref, M. Yousaf, A.M.M. Al Bakri and J. Bila, Co2YZ (Y = Cr, Nb, Ta, V and Z = Al, Ga) heusler alloys under the effect of pressure and strain. J. Mol. Graph. Model. 104 (2021), pp. 107841.
  • R. Singla, S. Kumar, T.A. Hackett, A.H. Reshak and M.K. Kashyap, Genesis of magnetism in graphene/MoS2 van der Waals heterostructures via interface engineering using Cr-adsorption. J. Alloys Compd. 859 (2021), pp. 157776.
  • D.M. Hoat, S. Amirian, H. Alborznia, A. Laref, A.H. Reshak and M. Naseri, Strain effect on the electronic and optical properties of 2D tetrahexcarbon: a DFT-based study. Indian J. Phys. 95 (2021), pp. 2365–2373.
  • M. Husain, N. Rahman, A.H. Reshak, A.H. Zulfiqar, S. Ali, A. Laref, A.M.M. Al Bakri and J. Bila, Insight into the physical properties of the inter-metallic titanium-based binary compounds. Eur. Phys. J. Plus 136 (2021), pp. 624.
  • A.H. Reshak, Bismuth-containing semiconductors GaAs1−xBix for energy conversion: thermoelectric properties. Mater. Sci. Semicond. Process. 148 (2022), pp. 106850.
  • C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv 5 (2019), pp. eaav0693.
  • M. Saeed, I.U. Haq, A.S. Saleemi, S.U. Rehman, B.U. Haq, A.R. Chaudhry and I. Khan, First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). J. Phys. Chem. Solids 160 (2022), pp. 110302.
  • M. Saeed, I.U. Haq, S.U. Rehman, A. Ali, W.A. Shah, Z. Ali, Q. Khan and I. Khan, Optoelectronic and elastic properties of metal halides double perovskites Cs2InBiX6 (X = F, Cl, Br, I). Chinese Optics Lett. 19 (2021), pp. 030004.
  • F. Zhao, Z. Song, J. Zhao and Q. Liu, Double perovskite Cs2AgInCl6:Cr3+: broadband and near-infrared luminescent materials. Inorg. Chem. Front 6 (2019), pp. 3621–3628.
  • P.R. Varadwaj, A2agcrcl6 (A = Li, Na, K, Rb, Cs) halide double perovskites: a transition metal-based semiconducting material series with appreciable optical characteristics. Phys. Chem. Chem. Phys. 22 (2020), pp. 24337–24350.
  • F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71 (1947), pp. 809.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30 (1944), pp. 244–247.
  • B. Henderson and G.F. Imbusch, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford, 1989.
  • S. Albert, K.K. Albert, H. Hollenstein, C.M. Tanner and M. Quack, Fundamentals of Rotation–Vibration Spectra, Handbook of High-Resolution Spectroscopy, John Wiley & Sons, Ltd, Chichester, 2011.
  • M. Bass, W.E. Van Stryland, R.D. Williams and W.L. Wolfe, Handbook of Optics, Volume II - Devices, Measurements, and Properties 1/1496, 1994.
  • M. Bass, W.E. Van Stryland, R.D. Williams and W.L. Wolfe, Handbook of Optics, Volume I - Fundamentals, Techniques, and Design 1/1606, 1994.
  • C.E. Moore, Atomic energy levels as derived from the analyses of optical spectra. U. S. Nat. Bur. Stand. Pub. 467 (1950).
  • F. Logiurato, Relativistic derivations of de Broglie and Planck-Einstein equations. J. Modern Phys. 5(1) (2014), pp. 41969.
  • Data from: mp-19996: Ba2GdNbO6 (cubic, Fm-3 m, 225). The Materials Project, 2022; dataset. Available at https://materialsproject.org/materials/mp-19996/. Doi: 10.17188/1195171.
  • L.G. Cai, F.M. Liu, W.W. Zhong and D. Zhang, The electronic structures and optical properties of substituted rare-earth manganite Tb1−xYbxMnO3. Chin. Phys. Lett. 30 (2013), pp. 053601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.