183
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Half-metallic ferromagnetism in non-magnetic double perovskite oxides Sr2MSbO6 (M=Al, Ga) doped with C and N

, , , &
Pages 186-201 | Received 16 Mar 2022, Accepted 28 Sep 2022, Published online: 23 Oct 2022

References

  • S.A. Mir, A.Q. She, and D.C. Gupta, New ferromagnetic half-metallic perovskites for spintronic applications: BaMO3 (M = Mg and Ca). RSC Adv. 10 (2020), pp. 36241–36252.
  • S.D. Sarma, Spintronics. Am. Sci. 89 (2001), pp. 516–523.
  • V.K. Joshi, A contemporary review of emerging electronics devices. Eng. Sci. Technol. Int. J. 19 (2016), pp. 1503–1513.
  • T. Kimura and Y. Otani, Large spin accumulation in a permalloy-silver lateral spin valve. Phys. Rev. Lett. 99 (2007), pp. 196604.
  • X.J. Wang, H. Zou, L.E. Ocola, R. Divan and Y. Ji, Influence of dc bias currents on Co/Cu/Co nonlocal spin valves. J. Appl. Phys. 105 (2009), pp. 093907.
  • M. Erekhinsky, A. Sharoni, F. Casanova and I.K. Schuller, Surface enhanced spin-flip scattering in lateral spin valves. Appl. Phys. Lett. 96 (2010), pp. 022513.
  • A. Vogel, J. Wulfhorst and G. Meier, Enhanced spin injection and detection in spin valves with integrated tunnel barriers. Appl. Phys. Lett. 94 (2009), pp. 122510.
  • P. Recher, E.V. Sukhorukov and D. Loss, Quantum dot as spin filter and spin memory. Phys. Rev. Lett. 85 (2000), pp. 1962.
  • R. Bogue, Towards the trillion sensors market. Sens. Rev. 34 (2014), pp. 137–142.
  • C. Reig, M.D.C. Beltrán and D.R. Muñoz, Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors 9 (2009), pp. 7919–7942.
  • D.D. Sante, A. Stroppa, P. Jain and S. Picozzi, Tuning the ferroelectric polarization in a multiferroic metal–organic framework. J. Am. Chem. Soc. 135 (2013), pp. 18126–18130.
  • M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi and U. Gösele, Ferroelectric switching in multiferroic magnetite (Fe 3 O4) thin films. Adv. Mater. 21 (2009), pp. 4452–4455.
  • Q. Yang, W. Xiong, L. Zhu, G. Gao and M. Wu, Chemically functionalized phosphorene: two-dimensional multiferroics with vertical polarization and mobile magnetism. J. Am. Chem. Soc. 139 (2017), pp. 11506–11512.
  • D. Sánchez, Magnetoasymmetric current fluctuations of single-electron tunneling. Phys. Rev. B 79 (2009), pp. 045305.
  • H. Liu, Y. Honda, T. Taira, K. Matsuda, M. Arita, T. Uemura and M. Yamamoto, Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling. Appl. Phys. Lett. 101 (2012), pp. 132418.
  • F. Bonell, S. Andrieu, C. Tiusan, F. Montaigne, E. Snoeck, B. Belhadji, L. Camels, F. Bertran, P. Le Fèvre and A.T. Ibrahimi, Influence of misfit dislocations on the magnetoresistance of MgO-based epitaxial magnetic tunnel junctions. Phys. Rev. B 82 (2010), pp. 092405.
  • T. Kubota, Y. Miura, D. Watanabe, S. Mizukami, F. Wu, H. Naganuma, X. Zhang, M. Oogane, M. Shirai, Y. Ando and T. Miyazaki, Magnetoresistance effect in tunnel junctions with perpendicularly magnetized D022-Mn3-δGa electrode and MgO barrier. Appl. Phys. Express 4 (2011), pp. 043002.
  • S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai and T. Miyazaki, Low damping constant for Co2FeAl Heusler alloy films and its correlation with density of states. J. Appl. Phys. 105 (2009), pp. 07D306.
  • H.G. Zhang, C.Z. Zhang, W. Zhu, E.K. Liu, W.H. Wang, H.W. Zhang, J.L. Cheng, H.Z. Luo and G.H. Wu, Significant disorder-induced enhancement of the magnetization of Fe2CrGa by ball milling. J. Appl. Phys. 114 (2013), pp. 013903.
  • H. Abbassa, S. Meskine, A. Labdelli, S. Kacher, T. Belaroussi and B. Amrani, Promising shape memory in NiCoMnZ (Z = Si, Ge and Sn) quaternary Heusler alloy from first principles. Mat. Chem. Phys. 256 (2020), pp. 123735.
  • Y. Mouffok, B. Amrani, K. Driss Khodja and H. Abbassa, Magneto-electronic and thermodynamic properties of quaternary NiFeMnZ (Z = In, Sn) new spin gapless semiconductors. J. Super. Nov. Magn. 32 (2019), pp. 615–625.
  • A. Abada, K. Amara, S. Hiadsi and B. Amrani, First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn. Magn. Mater. 388 (2015), pp. 59–67.
  • H. Abbassa, S.H. Mebarki, B. Amrani, T. Belaroussi and K. Driss Khodja, Theoretical investigation of new Heusler alloys Ru2VGa1−xAlx. J. Alloys.Compd. 637 (2016), pp. 557–563.
  • M. Ram, A. Saxena, A.E. Aly and A. Shankar, Half-metallicity in new Heusler alloys Mn2ScZ (Z = Si, Ge, Sn). RSC. Adv. 10 (2020), pp. 7661–7670.
  • W.H. Wang, M. Przybylski, W. Kuch, L.I. Chelaru, J. Wang, Y.F. Lu and J. Kirschner, Magnetic properties and spin polarization of Co2MnSi Heusler alloy thin films epitaxially grown on GaAs (001). Phys. Rev. B 71 (2005), pp. 144416.
  • M. Venkatesan, C.B. Fitzgerald, J.G. Lunney and J.M.D. Coey, Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 93 (2004), pp. 177206.
  • Z. Xu, Y. Li, Z. Liu and S.F. Liu, Electronic and magnetic behaviors of B, N, and 3d transition metal substitutions in germanium carbide monolayer. J. Magn. Magn. Mater. 451 (2018), pp. 799–807.
  • T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO. Appl. Phys. Lett. 75 (1999), pp. 3366–3368.
  • Z.Y. Feng and J.M. Zhang, Structural, electronic, magnetic and optical properties of semiconductor Zn1−xMoxTe compound. J. Phys. Chem. Solids 114 (2018), pp. 240–245.
  • H.S. Saini, M. Singh, A.H. Reshak and M.K. Kashyap, Variation of half metallicity and magnetism of Cd1−xCrxZ (Z = S, Se and Te) DMS compounds on reducing dilute limit. J. Magn. Magn. Mater. 331 (2013), pp. 1–6.
  • N.O. Damerdji, B. Amrani, K. Driss Khodja and P. Aubert, First-Principle study on the origin of ferromagnetism in non-magnetic halide perovskite CsCdM3 (M = Cl and Br) doped with B, C, and N. J. Super. Nov. Magn. 31 (2018), pp. 2935–2940.
  • A. Rahmani, K. Driss Khodja and B. Amrani, Mechanical stability, magnetic and electronic properties of Sr1-xBaxFeO3: DFT+U study. Acta. Phys. Pol. A 138 (2020), pp. 469–476.
  • J.B. Goodenough, An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J. Phys. Chem. Solids 6 (1958), pp. 287–297.
  • R. Søndenå, P. Ravindran, S. Stølen, T. Grande and M. Hanfland, Electronic structure and magnetic properties of cubic and hexagonal SrMnO3. Phys. Rev. B 74 (2006), pp. 144102.
  • S. Vasala and M. Karppinen, A2b′B″O6 perovskites: A review. Prog. Solid State. Chem 43 (2015), pp. 1–36.
  • T.S. Chan, R.S. Liu, G.Y. Guo, S.F. Hu, J.G. Lin, J.F. Lee, L.Y. Jang, C.R. Chang and C.Y. Huang, Structural, electrical and magnetic characterization of the double perovskites Sr2CrMO6 (M = Mo, W): B0 4d–5d system. Solid State Commun. 131 (2004), pp. 531–535.
  • H.T. Jeng and G.Y. Guo, First-principles investigations of orbital magnetic moments and electronic structures of the double perovskites Sr2FeMoO6, Sr2FeReO6, and Sr2CrWO6. Phys. Rev. B 67 (2003), pp. 094438.
  • D.P. Rai, A. Shankar, M.P. Ghimire, Sandeep and R.K. Thapa, The electronic, magnetic and optical properties of double perovskite A2FeReO6 (A = Sr, Ba) from first principles approach. Comput. Mater. Sci. 101 (2015), pp. 313–320.
  • Z. Fang, K. Terakura and J. Kanamori, Strong ferromagnetism and weak antiferromagnetism in double perovskites: Sr2FeMO6 (M = Mo, W, and Re). Phys. Rev. B 63 (2001), pp. 180407.
  • W. Zhong, W. Liu, C.T. Au and Y.W. Du, Tunnelling magnetoresistance of double perovskite Sr2FeMoO 6 enhanced by grain boundary adjustment. Nanotechnology 17 (2006), pp. 250–256.
  • S.A. Ivanov, S.G. Eriksson, R. Tellgren, H. Rundlöf and M. Tseggai, The magnetoelectric perovskite Sr2CoMoO6: An insight from neutron powder diffraction. Mater. Res. Bull. 40 (2005), pp. 840–849.
  • A.F. Lamrani, M. Ouchri, A. Benyoussef, M. Belaiche and M. Loulidi, Half-metallic antiferromagnetic behavior of double perovskite Sr2OsMoO6: First principle calculations. J. Magn. Magn. Mater. 345 (2013), pp. 195–200.
  • R. Rahmani, B. Amrani, K. Driss Khodja, A. Boukhachem and P. Aubert, Systematic study of elastic, electronic, and magnetic properties of lanthanum cobaltite oxide. J. Comp. Electr. 17 (2018), pp. 920–925.
  • K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395 (1998), pp. 677–680.
  • Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, G.M. Stocks and H. Winter, Half-metallic transition metal oxides. J. Magn. Magn. Mater. 272-276 (2004), pp. 1816–1817.
  • J. Zhang, W.J. Ji, J. Xu, X.Y. Geng, J. Zhou, Z.B. Gu, S.H. Yao and S.T. Zhang, Giant positive magnetoresistance in half-metallic double-perovskite Sr2CrWO6 thin films. Sci. Adv. 3 (2017), pp. e1701473.
  • T. Xia, Q. Li, J. Meng and X. Cao, Structural characterization, stability and electrical properties of strontium niobate ceramic. Mat. Chem. Phys. 111 (2008), pp. 335–340.
  • A. Faik, M. Gateshki, J.M. Igartua, J.L. Pizarro, M. Insausti, R. Kaindl and A. Grzechnik, Crystal structures and cation ordering of Sr2AlSbO6 and Sr2CoSbO6. J. Sol. Stat. Chem. 181 (2008), pp. 1759–1766.
  • U. Wittmann, G. Rauser and S. Kemmler-Sack, Über die Ordnung von BIII und MV in Perowskiten vom Typ AIIBIIIMVO6 (AII = Ba, Sr; MV = Sb, Nb, Ta). Z. Anorg. Allg. Chem. 482 (1981), pp. 143–153.
  • M.W. Lufaso, R.B. Macquart, Y. Lee, T. Vogt and H.C. zur Loye, Structural studies of Sr2GaSbO6, Sr2NiMoO6, and Sr2FeNbO6 using pressure and temperature. J. Phys. Condens. Matter. 18 (2006), pp. 8761–8780.
  • A. Tauber, S.C. Tidrow, R.D. Finnegan and W.D. Wilber, HTSC substrate and buffer layer compounds, A2MeSbO6 where A = Ba, Sr and Me = Sc, In and Ga. Physica C 256 (1996), pp. 340–344.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz. WIEN2k: an aug-mented plane wave plus local orbitals program for calculating crystal properties. K. Schwarz, Technische Universität Wien, Wien, Austria, 2001.
  • K. Schwarz and P. Blaha, Solid state calculations using WIEN2k. Comp. Mat. Sci. 28 (2003), pp. 259–273.
  • W. Kohn and L.J. Sham, Self-Consistent equations including exchange and correlation effects. Phys. Rev. A 140 (1965), pp. 1133–1138.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semi- local exchange-correlation potential. Phys. Rev. Lett. 102 (2009), pp. 226401.
  • V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14 (1926), pp. 477–485.
  • R.D. Shannon and C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crys. B 25 (1969), pp. 925–946.; R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32 (1976), pp. 751–767.
  • A.M. Glazer, The classification of tilted octahedra in perovskites. Acta Cryst. B28 (1972), pp. 3384–3392.
  • A.M. Glazer, A brief history of tilts. Phase Transit. 84 (2011), pp. 405–420.
  • A.S. Sanchez, J.L.G. Munoz, J.R. Carvajal, R.S. Puche and J.L. Martinez, Structural characterization of R2BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron diffraction. J. Solid. State. Chem. 100 (1992), pp. 201–211.
  • S.H. Byeon, S.S. Lee, J.B. Parise and P.M. Woodward, New perovskite Oxide CaCu3Cr2Ru2O12:  Comparison with structural, magnetic, and transport properties of the CaCu3B2B‘2O12 perovskite family. Chem. Mater. 18 (2006), pp. 3873–3877.
  • M.W. Lufaso, P.W. Barnes and P.M. Woodward, Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS. Acta Cryst. B 62 (2006), pp. 397–410.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30 (1944), pp. 244–247.
  • M. Born and K. Huang, Dynamical Theory and Experiment I, Springer-Verlag, Berlin, 1982.
  • S.F. Pugh, XCII. relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 45 (1954), pp. 823–843.
  • I.N. Frantsevich, F.F. Voronov and S.A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Handbook, Naukova Dumka, Kiev, 1982.
  • B. Rameshe, M. Rajagopalan and B. Palanivel, Electronic structure, structural phase stability, optical and thermoelectric properties of Sr2AlM'O6 (M’ = Nb and Ta) from first principle calculations. Comput. Condens. Matter. 4 (2015), pp. 13–22.
  • N.E.H. Djezzar, K. Driss-Khodja and B. Amrani, Exploring dynamical, mechanical and optoelectronic properties of cubic Mg3CdO4: First-principle study. Mater. Today Commun. 26 (2021), pp. 102106.
  • S. Moufok, L. Kadi, B. Amrani and K. Driss Khodja, Electronic structure and optical properties of TeO2 polymorphs. Results Phys. 13 (2019), pp. 102315.
  • H. Peng, H.J. Xiang, S.-H. Wei, S.-S. Li, J.-B. Xia and J. Li, Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. Phys. Rev. Lett. 102 (2009), pp. 017201.
  • Y. Liu, W. Zhou and P. Wu, Tuning of magnetism of SrTiO3 by site-specific doping. Mater. Chem. Phys. 160 (2015), pp. 80–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.