142
Views
4
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The electric and magnetic field effects on the optical absorption in double QWs with squared, U-shaped and V-shaped confinement potentials

ORCID Icon, , , , , & show all
Pages 321-334 | Received 01 Sep 2022, Accepted 21 Oct 2022, Published online: 19 Nov 2022

References

  • G. Bastard, Quantum-size effects in the continuum states of semiconductor quantum wells. Phys. Rev. B 30(6) (1984), pp. 3547–3549. doi:10.1103/PhysRevB.30.3547.
  • D. Bera, L. Qian, T.-K. Tseng, and P.H. Holloway, Quantum dots and their multimodal applications: A review. Materials. (Basel) 3(4) (2010), pp. 2260–2345.
  • H. El Ghazi, A. Jorio, and I. Zorkani, Pressure-dependent shallow donor binding energy in InGaN/GaN square QWWs. Phys. B Condens. Matter 410 (2013), pp. 49–52.
  • M.M. Olaimat, M.M. Olaimat, L. Yousefi, and O.M. Ramahi, Using plasmonics and nanoparticles to enhance the efficiency of solar cells: Review of latest technologies. JOSA B 38(2) (2021), pp. 638–651. doi:10.1364/JOSAB.411712.
  • M. Yamaguchi, High-efficiency GaAs-based solar cells. Post-Transit. Met. (2020).
  • J.-P. Shim, S.-R. Jeon, Y.-K. Jeong, and D.-S. Lee, Improved efficiency by using transparent contact layers in InGaN-based p-i-n solar cells. IEEE Electron Device Lett. 31(10) (2010), pp. 1140–1142. doi:10.1109/LED.2010.2058087.
  • L.-X. Zhao, Z.-G. Yu, B. Sun, S.-C. Zhu, P.-B. An, C. Yang, L. Liu, J.-X. Wang, and J.-M. Li, Progress and prospects of GaN-based LEDs using nanostructures. Chinese Phys. B 24(6) (2015), p. 068506. doi:10.1088/1674-1056/24/6/068506.
  • S.H. Abud, Z. Hassan, F.K. Yam, and C.W. Chin, Characteristics of MSM photodetector fabricated on porous In0.08Ga0.92N. Measurement Mahwah. N. J) 50 (2014), pp. 172–174. doi:10.1016/j.measurement.2014.01.016.
  • F. Hartmann, F. Langer, D. Bisping, A. Musterer, S. Höfling, M. Kamp, A. Forchel, and L. Worschech, Gaas/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing. Appl. Phys. Lett. 100(17) (2012), p. 172113.
  • H.W. Li, B.E. Kardynał, P. See, and A.J. Shields, Quantum dot resonant tunneling diode for telecommunication wavelength single photon detection. Appl. Phys. Lett. 91(7) (2007), p. 073516.
  • J.-K. Sheu, C.-C. Yang, S.-J. Tu, K.-H. Chang, M.-L. Lee, W.-C. Lai, and L.-C. Peng, Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers. IEEE Electron Device Lett. 30(3) (2009), pp. 225–227. doi:10.1109/LED.2008.2012275.
  • D. Fritsch, H. Schmidt, and M. Grundmann, Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN. Phys. Rev. B 67(23) (2003), p. 235205. doi:10.1103/PhysRevB.67.235205.
  • M. Kuzuhara and H. Tokuda, Low-loss and high-voltage III-nitride transistors for power switching applications. IEEE Trans. Electron Devices 62(2) (2015), pp. 405–413. doi:10.1109/TED.2014.2359055.
  • T. Palacios and U.K. Mishra, 5.06 - GaN-Based transistors for high-frequency applications, in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, H. Kamimura, eds., Elsevier, Amsterdam, 2011. pp. 242–298. doi:10.1016/B978-0-44-453153-7.00021-3.
  • H.S. Aydinoglu, S. Sakiroglu, H. Sari, F. Ungan, and I. Sökmen, Nonlinear optical properties of asymmetric double-graded quantum wells. Philos. Mag. 98(23) (2018), pp. 2151–2163. doi:10.1080/14786435.2018.1476785.
  • R. En-Nadir, H. El Ghazi, A. Jorio, and I. Zorkani, Ground-state shallow-donor binding energy in (In, Ga) N/GaN double QWs under temperature, size, and the impurity position effects. J. Model. Simul. Mater. 4(1) (2021), pp. 1–6.
  • K. Leo, J. Shah, E.O. Gobel, J.P. Gordon, and S. Schmitt-Rink, Coherent and incoherent tunneling in asymmetric double quantum wells. Semicond. Sci. Technol. 7(3B) (1992), pp. B394–B400.
  • J. Liu, Y. Zhou, J. Zhu, Y. Cai, K.M. Lau, and K.J. Chen, DC and RF characteristics of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs. IEEE Trans. Electron Devices 54(1) (2007), pp. 2–10.
  • Y. Ohno, M. Tsuchiya, and H. Sakaki, Gigantic negative transconductance and mobility modulation in a double-quantum-well structure via gate-controlled resonant coupling. Appl. Phys. Lett. 62(16) (1993), pp. 1952–1954.
  • C. Chevalier and B.M. Wong, HADOKEN: An open-source software package for predicting electron confinement effects in various nanowire geometries and configurations. Comput. Phys. Commun. 274 (2022), p. 108299. doi:10.1016/j.cpc.2022.108299.
  • A.-N. Aishah, H. Dakhlaoui, T. Ghrib, and B.M. Wong, Effects of magnetic, electric, and intense laser fields on the optical properties of AlGaAs/GaAs quantum wells for terahertz photodetectors. Phys. B Condens. Matter. 635 (2022), p. 413838.
  • M. Fickenscher, T. Shi, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, C. Zheng, P. Miller, J. Etheridge, B.M. Wong, Q. Gao, S. Deshpande, H.H. Tan, and C. Jagadish, Optical, structural, and numerical investigations of GaAs/AlGaAs core–multishell nanowire quantum well tubes. Nano Lett. 13(3) (2013), pp. 1016–1022.
  • F. Capasso, K. Mohammed, and A.Y. Cho, Sequential resonant tunneling through a multiquantum well superlattice. Appl. Phys. Lett. 48(7) (1986), pp. 478–480.
  • H. Fu, Z. Lu, and Y. Zhao, Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect. AIP Adv. 6(6) (2016), p. 065013.
  • Z. Parang, A. Keshavarz, and N. Zamani, Optimization of optical absorption coefficient in double modified Pöschl–Teller quantum wells. J. Comput. Electron. 13(4) (2014), pp. 1020–1025.
  • S. Baskoutas, C. Garoufalis, and A.F. Terzis, Linear and nonlinear optical absorption coefficients in inverse parabolic quantum wells under static external electric field. Eur. Phys. J. B 84(2) (2011), pp. 241–247. doi:10.1140/epjb/e2011-20470-9.
  • O. Ozturk, E. Ozturk, and S. Elagoz, Linear and nonlinear optical absorption coefficient and electronic features of triple GaAlAs/GaAs and GaInAs/GaAs quantum wells depending on barrier widths. Optik. (Stuttg) 180 (2019), pp. 394–405.
  • E. Ozturk, Nonlinear optical absorption in graded quantum wells modulated by electric field and intense laser field. Eur. Phys. J. B 75(2) (2010), pp. 197–203.
  • E. Ozturk, Depending on the electric and magnetic field of the linear optical absorption and rectification coefficient in triple quantum well. Opt. Quantum Electron. 49(8) (2017), pp. 1–14.
  • O. Ozturk, E. Ozturk, and S. Elagoz, Linear and nonlinear optical properties of asymmetric triple quantum wells under intense laser field. Laser Phys. 29(5) (2019), p. 055402.
  • A. Keshavarz and M.J. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells. Phys. Lett. A 374(26) (2010), pp. 2675–2680.
  • E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, and I. Sökmen, Influence of position dependent effective mass on impurity binding energy and absorption in quantum wells with the Konwent potential. Mater. Sci. Semicond. Process. 135 (2021), p. 106076.
  • F.M. Nava-Maldonado, J.G. Rojas-Briseño, J.C. Martínez-Orozco, and M.E. Mora-Ramos, Strain effects in the absorption coefficient and relative refractive index change in double asymmetric AlxGa1−xN/GaN quantum wells. Phys. E Low-Dimens. Syst. Nanostructures. 111 (2019), pp. 134–140. doi:10.1016/j.physe.2019.03.008.
  • S. Almansour, Numerical simulation of the effects of electric and magnetic fields on the optical absorption in a parabolic quantum well. J. Korean Phys. Soc. 75(10) (2019), pp. 806–810. doi:10.3938/jkps.75.806.
  • H. Abboudi, H. El Ghazi, F. Benhaddou, R. En-nadir, A. Jorio, and I. Zorkani, Temperature-related photovoltaic characteristics of (In,Ga)N single-intermediate band quantum well solar cells for different shapes. Phys. B Condens. Matter. 626 (2021), p. 413495. doi:10.1016/j.physb.2021.413495.
  • M.H. Gazzah, B. Chouchen, A. Fargi, and H. Belmabrouk, Electro-thermal modeling for InxGa1-xN/GaN based quantum well heterostructures. Mater. Sci. Semicond. Process. 93 (2019), pp. 231–237.
  • H. El Ghazi, R. En-nadir, H. Abboudi, F. Jabouti, A. Jorio, and I. Zorkani, Two-dimensional electron gas modeling in strained InN/GaN hetero-interface under pressure and impurity effects. Phys. B Condens. Matter. 582 (2020), p. 411951. doi:10.1016/j.physb.2019.411951.
  • R. En-nadir, H. El Ghazi, A. Jorio, and I. Zorkani, Inter and intra band impurity-related absorption in (In, Ga) N/GaN QW under composition, size and impurity effects, MATEC Web of Conferences, 2020, vol. 330.
  • R. En-nadir, H. El-ghazi, A. Jorio, I. Zorkani, H. Abboudi, and F.A. Jabouti, Numerical study of temperature and electric field effects on the total optical absorption coefficient in the presence of optical inter-conduction-subband transitions in InGaN/GaN single parabolic quantum wells. Fluid Dyn. Mater. Process. 18 (2022) pp. 1253–1261. doi:10.32604/fdmp.2022.021759.
  • U. Yesilgul, Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in symmetric double semi-V-shaped quantum wells. J. Lumin. 132(3) (2012), pp. 765–773. doi:10.1016/j.jlumin.2011.10.016.
  • U. Yesilgul, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, F. Ungan, and E. Kasapoglu, Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields. Opt. Mater. 58 (2016), pp. 107–112. doi:10.1016/j.optmat.2016.03.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.