59
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theoretical investigation of compensation point phenomena in a ferrimagnetic mixed spin-3/2 and spin-1 Ising nanoparticle

, , , &
Pages 574-594 | Received 11 Jun 2022, Accepted 17 Oct 2022, Published online: 23 Dec 2022

References

  • R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200 (1999), pp. 359.
  • T.Y. Kim, Y. Yamazaki and T. Hirano, Magneto-optical properties of Bi-YIG nanoparticle with polymethacrylate matrix materials. Phys. Status Solidi B 241 (2004), pp. 1601.
  • C. Alexiou, A. Schmidt, R. Klein, P. Hullin, C. Bergemann and W. Arnold, Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J. Magn. Magn. Mater. 252 (2002), pp. 363.
  • V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues, Beating the superparamagnetic limit with exchange bias. Nature 423 (2003), pp. 850.
  • X. He, Z.H. Wang, D.Y. Geng and Z.D. Zhang, Structure and magnetic properties of S-doped Mn3O4/S composited nanoparticles and Mn3O4 nanoparticles. J. Mater. Sci. Tech. 27 (2011), pp. 503.
  • A.J. Haes and R.P. Van Duyne, A highly sensitive and selective surface-enhanced nanobiosensor. Mater. Res. Soc. Symp. Proc. 723 (2002), pp. O3.1.1.
  • Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa and Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82 (2003), pp. 460.
  • A.J. Haes, C.L. Haynes and R.P. Van Duyne, Nanosphere lithography self-assembled photonic and magnetic materials. Mater. Res. Soc. Symp. 636 (2001), pp. D4.8.1.
  • T.R. Jensen, G.C. Schatz and R.P. Van Duyne, Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103 (1999), pp. 2394.
  • T. Kaneyoshi, Phase diagrams of a nanoparticle described by the transverse ising mode. Phys. Status Solidi B 242 (2005), pp. 2938.
  • T. Kaneyoshi, Phase transition in mixed spin ising nanoparticles. J. Supercond. Nov. Magn. 33 (2020), pp. 1151.
  • Z.M. Lu, N. Si, Y.N. Wang, F. Zang, J. Meng, H.L. Miao and W. Jiang, Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy. Physica A 523 (2019), pp. 438.
  • T. Kaneyoshi, Ferrimagnetism and reentrant phenomena in a tetragonal ising nanoparticle. Philos. Mag. 100 (2020), pp. 1.
  • T. Kaneyoshi, Decorated Ising nanoparticles with high critical temperature. Phase Trans. 93 (2020), pp. 263.
  • W. Jiang and J.Q. Huang, Magnetic properties of a hexagonal prismatic nanoparticle with ferrimagnetic core–shell structure. Physica E 78 (2016), pp. 115.
  • H. El Hamri, S. Bouhou, I. Essoudi, A. Ainane and R. Ahuja, Reentrant phenomenon in a transverse spin-1 Ising nanoparticle with diluted magnetic sites. J. Magn. Magn. Mater. 442 (2017), pp. 53.
  • M. Mouhib, N. Benayard and M. Azhari, Magnetic properties of mixed spin (1/2,1) Ising nanoparticles. J. Phys. Conf. Ser. 758 (2016), pp. 012005.
  • M. Mouhib, S. Bri, H. Mounir and M.D. Belrhiti, Phase diagrams and magnetisations of mixed spin nanoparticles with transverse field and crystal field. Philos. Mag. 102 (2021), pp. 264.
  • M. Mouhib, N. Benayad and M. Azhari, Monte carlo investigation of mixed spin Ising 2D-nanoparticles. J. Phys. Commun. 2 (2018), pp. 045006.
  • A. Feraoun, S. Amraoui and M. Kerouad, Magnetic properties of a mixed spin-(5/2, 2) Ising core/shell nanoparticle: Monte Carlo study. Physica A 526 (2019), pp. 120924.
  • E. Vatanserver and Y. Yuksel, Nonmagnetic impurities and roughness effects on the finite temperature magnetic properties of core-shell spherical nanoparticles with antiferromagnetic interface coupling. J. Magn. Magn. Mater. 441 (2017), pp. 548.
  • L. Néel, Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Ann. Phys. 3 (1948), pp. 137.
  • M. Mansuripur, Magnetization reversal, coercivity, and the process of thermomagnetic recording in thin films of amorphous rare earth–transition metal alloys. J. Appl. Phys. 61 (1987), pp. 1580.
  • O. Khan, Molecular Magnetism, VCH Publisher, New York, 1993.
  • R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi and H. El Moussaoui, Electronic and magnetic properties of MnAu nanoparticles. J. Magn. Magn. Mater. 354 (2014), pp. 159.
  • O. Mounkachi, R. Lamouri, E. Salmani, M. Hamedoun, A. Benyoussef and H. Ez-Zahraouy, Origin of the magnetic properties of MnFe2O4 spinel ferrite: Ab initio and Monte Carlo simulation. J. Magn. Magn. Mater. 533 (2021), pp. 168016.
  • R. Masrour, M. Hamedoun and A. Benyoussef, Magnetic properties of MnCr2O4 nanoparticle. J. Magn. Magn. Mater. 322 (2010), pp. 301.
  • H.K. Mohamad, H.A. Yasser and O.M. Nabeel, Ferrimagnetism in the mean-field approximation of a mixed spin Ising nanowire system. Solid State Commun. 308 (2020), pp. 113832.
  • W. Jiang, Y.-Y. Yang and A.-B. Guo, Study on magnetic properties of a nano-graphene bilayer. Carbon. N. Y. 95 (2015), pp. 190.
  • J.-M. Wang, W. Jiang, C.-L. Zhou, Z. Shi and C. Wu, Magnetic properties of a nanoribbon: An effective-field theory. Superlatt. Microstruct. 102 (2017), pp. 359.
  • N. Şarlı and M. Keskin, Effects of the Copper and Oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chin. J. Phys. 59 (2019), pp. 256.
  • A. Boubekri, Z. Elmaddahi, A. Farchakh and M. El Hafidi, Critical and compensation temperature in a ferrimagnetic mixed spin Ising trilayer nano-graphene superlattice. Physica B 626 (2022), pp. 413526.
  • R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun and L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core-shell structure. Physica B 472 (2015), pp. 19.
  • R. Masrour, A. Jabar, A. Benyoussef and M. Hamedoun, Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices. J. Magn. Magn. Mater. 410 (2016), pp. 223.
  • R. Masrour and A. Jabar, Magnetic properties of multilayered with alternating magnetic wires with the mixed spins-2 and 5/2 ferrimagnetic Ising model. Superlatt. Microstruct. 109 (2017), pp. 641.
  • R. Masrour, A. Jabar, A. Benyoussef and M. Hamedoun, Magnetic properties of cluster dendrimers of core/shell with mixed spins ( = 3/2 and S = 2: A Monte Carlo study. Chem. Phys. Lett. 691 (2018), pp. 199.
  • A. Jabar and R. Masrour, Magnetic properties of mixed spin-5/2 and spin-2 ising model on a decorated square lattice: A Monte Carlo simulation. Physica A 515 (2019), pp. 270.
  • T. Sahdane, R. Masrour and A. Jabar, Dielectric properties of the mixed spins (S = 5/2, σ = 2) and (σ = 5/2 and S = 2) in nanotube system: A Monte Carlo study. Solid State Commun. 310 (2020), pp. 113851.
  • B. Deviren and Y. Şener, Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core–shell structure. J. Magn. Magn. Mater. 386 (2015), pp. 12.
  • Y. Yuksel, E. Aydıner and H. Polat, Thermal and magnetic properties of a ferrimagnetic nanoparticle with spin-3/2 core and spin-1 shell structure. J. Magn. Magn. Mater. 323 (2011), pp. 3168.
  • W. Wang, D.-d. Chen, D. Lv, J.-p. Liu, Q. Li and Z. Peng, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure. J. Phys. Chem. Solids 108 (2017), pp. 39.
  • A. Jabar, R. Masrour, A. Benyoussef and M. Hamedoun, Magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice: A Monte Carlo study. Chem. Phys. Lett. 670 (2017), pp. 16.
  • W. Jiang, X.-X. Li, A.-B. Guo, H.-Y. Guan, Z. Wang and K. Wang, Magnetic properties and thermodynamics in a metallic nanotube. J. Magn. Magn. Mater. 355 (2014), pp. 309.
  • R. Masrour, A. Jabar, A. Benyoussef and M. Hamedoun, Monte Carlo simulation of magnetic properties of a mixed spin-1 and spin-3/2 ferrimagnetic Ising system. Chem. Phys. Lett. 631-632 (2015), pp. 92.
  • D. Lv, F. Wang, R.-j. Liu, Q. Xue and S.-x. Li, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure. J. Alloys Compd. 701 (2017), pp. 935.
  • W. Wang, J.-l. Bi, R.-j. Liu, X. Chen and J.-p. Liu, Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire. Superlatt. Microstruct. 98 (2016), pp. 433.
  • A. Feraoun and M. Kerouad, The mixed spin-(1,3/2) Ising nanowire with core/inter-shell/outer-shell morphology. Appl. Phys. A 124 (2018), pp. 735.
  • Z.-y. Gao, D. Lv, W. Wang and J. Yu, Study on the dynamic magnetic behaviors in a ferrimagnetic mixed spin Ising ladder-type graphene nanoribbon. Polymer 223 (2021), pp. 123678.
  • M. Qajjour, N. Maaouni, Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad and W. Ousi Benomar, Compensation behaviors in a tri-layers nano-dicoronylene like-structure with ferrimagnetic mixed spins (3/2,1): Monte Carlo study. Chin. J. Phys. 68 (2020), pp. 930.
  • Y.J. Song, Y.H. Wang, S.X. Ji and J. Ding, Shell-driven fine structure transition of core materials in Co@Au core-shell nanoparticles. Nano-Micro. Lett. 4 (2012), pp. 235.
  • E. Munoz-Sandoval, et al., Synthesis, characterization and magnetic properties of Co@Au core-shell nanoparticles encapsulated by nitrogen-doped multiwall carbon nanotubes. Carbon. N. Y. 77 (2014), pp. 22.
  • J. Ahmed, S. Sharma, K.V. Ramanujachary, S.E. Lofland and A.K. Ganguli, Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt–nickel alloy nanoparticles. J. Coll. Interf. Sci. 336 (2009), pp. 814.
  • W. Lu, D. Sun and H. Yu, Synthesis and magnetic properties of size-controlled CoNi alloy nanoparticles. J. Alloys Compd. 546 (2013), pp. 229.
  • M.A. Lantz, et al., 123 gbit/in2 recording areal density on barium ferrite tape. IEEE Trans. Magn. 51 (2015), pp. 1.
  • R. Sharma, P. Thakur, P. Sharma and V. Sharma, Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J. Alloys Compd. 704 (2017), pp. 7.
  • S. Díez-Villares, et al., Manganese ferrite nanoparticles encapsulated into vitamin E/sphingomyelin nanoemulsions as contrast agents for high-sensitive magnetic resonance imaging. Adv. Healthc. Mater. 10 (2021), pp. 2101019.
  • S.R. Patade, D.D. Andhare, M.V. Khedkar, S.A. Jadhav and K.M. Jadhav, Synthesis and characterizations of magnetically inductive Mn–Zn spinel ferrite nanoparticles for hyperthermia applications. J. Mater. Sci. Mater. Electron. 32 (2019), pp. 13685.
  • R. Honmura and T. Kaneyoshi, Contribution to the new type of effective-field theory of the Ising model. J. Phys. C Solid State Phys. 12 (1979), pp. 3979.
  • N. Benayad, A. Dakhama, A. Clümper and J. Zittartz, Mixed spin- and spin- ising models with random nearest-neighbour interactions. Ann. Phys. Lpz. 508 (1996), pp. 387.
  • N. Benayad, L. Khaya and A. Fathi, The diluted random field mixed spin ising model: thermodynamical properties. J. Phys. Condens. Mater. 14 (2002), pp. 9667.
  • M. Azhari, N. Benayad and M. Mouhib, Continuum of compensation points in the mixed spin ising ferrimagnet with four-spin interaction and next-nearest neighbor coupling. Phase Trans. 90 (2017), pp. 485.
  • M. Mouhib, N. Benayad and M. Azhari, Mixed spin (1/2,1) transverse Ising nanoparticles. J. Magn. Magn. Mater. 419 (2016), pp. 325.
  • M. Mouhib, S. Bri, M.D. Belrhiti and H. Mounir, Ferrimagnetic behaviors of mixed spin ising nanotube with crystal field. J. Supercond. Nov. Magn. 35 (2022), pp. 555.
  • M. Mouhib, S. Bri, H. Mounir and M.D. Belrhiti, Square and hexagonal mixed spin ising nanoislands with multi-spin interactions. J. Magn. Magn. Mater. 560 (2022), pp. 169592.
  • M. Ghliyem, N. Benayad and M. Azhari, Thermodynamical properties of the mixed spin transverse Ising model with four-spin interactions. Physica A 402 (2014), pp. 14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.