650
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dynamic grain models via fast heuristics for diagram representations

, , &
Pages 948-968 | Received 14 Apr 2022, Accepted 10 Feb 2023, Published online: 02 Mar 2023

References

  • H.F. Poulsen, Three-dimensional X-ray Diffraction Microscopy: Mapping Polycrystals and Their Dynamics, Springer, Berlin, 2004.
  • A. Rollett, G.S. Rohrer, and J. Humphreys, Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017.
  • C.S. Smith, Grain shapes and other metallurgical applications of topology, in Metal Interfaces: a seminar on metal interfaces held during the 33rd National Metal Congress and Exposition, October 13-19, American Society for Metals, Detroit (Cleveland), 1952. pp. 65–108.
  • J. von Neumann, Discussion of article [3] by C.S.Smith, in Metal Interfaces: a seminar on metal interfaces held during the 33rd National Metal Congress and Exposition, October 13-19, American Society for Metals, Detroit (Cleveland), 1952. pp. 108–110.
  • W.W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), pp. 900–904.
  • J. Zhang, Y. Zhang, W. Ludwig, D. Rowenhorst, P.W. Voorhees, and H.F. Poulsen, Three-dimensional grain growth in pure iron. Part I. Statistics on the grain level, Acta Mater. 156 (2018), pp. 76–85.
  • M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (1965), pp. 227–238.
  • R.D. MacPherson and D.J. Srolovitz, The von Neumann relation generalized to coarsening of three-dimensional microstructures, Nature 446 (2007), pp. 1053–1055.
  • A. Bhattacharya, Y.-F. Shen, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, C.E. Krill III, and G.S. Rohre, Grain boundary velocity and curvature are not correlated in Ni polycrystals, Science 374 (2021), pp. 189–193.
  • J. Han, S.L. Thomas, and D.J. Srolovitz, Grain-boundary kinetics: A unified approach, Prog. Mater. Sci. 98 (2018), pp. 386–476.
  • J.H.X. Wang, J. Zhang, J. Luo, Z. Zhang, and Z. Shen, A general mechanism of grain growth-I. Theory, J Materiomics 7 (2021), pp. 1007–1013.
  • P.R. Rios and D. Zöllner, Critical assessment 30: Grain growth – unresolved issues, Mater. Sci. Technol. 34 (2018), pp. 629–638.
  • D. Zöllner, P.R. Rios, and I. Zlotnikov, Topological transitions: A topological random walk or pure geometric necessity? Comput. Mater. Sci. 166 (2019), pp. 42–56.
  • H.F. Poulsen and G.B.M. Vaughan, Multigrain crystallography and three-dimensional grain mapping, in International Tables for Crystallography: Powder Diffraction. Vol. H, International Union of Crystallography, Hoboken, 2019.
  • A. Lyckegaard, E.M. Lauridsen, W. Ludwig, R.W. Fonda, and H.F. Poulsen, On the use of Laguerre tessellations for representations of 3D grain structures, Adv. Eng. Mater. 13 (2011), pp. 165–170.
  • H. Telley, T.M. Liebling, and A. Mocellin, The Laguerre model of grain growth in two dimensions I Cellular structures viewed as dynamical Laguerre tessellations, Philos. Mag. B 73 (1996), pp. 409–427.
  • H. Telley, T.M. Liebling, A. Mocellin, and F. Righetti, Simulating and modelling grain growth as the motion of a weighted Voronoi diagram, Mater. Sci. Forum 94-96 (1992), pp. 301–306.
  • A. Alpers, A. Brieden, P. Gritzmann, A. Lyckegaard, and H.F. Poulsen, Generalized balanced power diagrams for 3D representations of polycrystals, Philos. Mag. 95 (2015), pp. 1016–1028.
  • H. Altendorf, F. Latourte, D. Jeulin, M. Faessel, and L. Saintoyant, 3D reconstruction of a multiscale microstructure by anisotropic tessellation models, Image Anal. Stereol. 33 (2014), p. 121.
  • L. Petrich, O. Furat, M. Wang, C.E. Krill III, and V. Schmidt, Efficient fitting of 3D tessellations to curved polycrystalline grain boundaries, Front. Mater. 8 (2021), Article ID 760602.
  • O. Šedivý, T. Brereton, D. Westhoff, L. Polívka, V. Beneš, V. Schmidt, and A. Jëger, 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries, Philos. Mag. 96 (2016), pp. 1926–1949.
  • O. Šedivý, J. Mullen Dake, C.E. Krill III, V. Schmidt, and A. Jäger, Description of the 3D morphology of grain boundaries in aluminium alloys using tessellation models generated by ellipsoids, Image Anal. Stereol. 36 (2017), p. 5.
  • A. Spettl, T. Brereton, Q. Duan, T. Werz, C.E. Krill III, D.P. Kroese, and V. Schmidt, Fitting laguerre tessellation approximations to tomographic image data, Philos. Mag. 96 (2016), pp. 166–189.
  • K. Teferra and L. Graham-Brady, Tessellation growth models for polycrystalline microstructures, Comput. Mater. Sci. 102 (2015), pp. 57–67.
  • K. Teferra and D.J. Rowenhorst, Direct parameter estimation for generalised balanced power diagrams, Philos. Mag. Lett. 98 (2018), pp. 79–87.
  • J. Barker, G. Bollerhey, and J. Hamaekers, A multilevel approach to the evolutionary generation of polycrystalline structures, Comput. Mater. Sci. 114 (2016), pp. 54–63.
  • D.P. Bourne, P.J.J. Kok, S.M. Roper, and W.D.T. Spanjer, Laguerre tessellations and polycrystalline microstructures: A fast algorithm for generating grains of given volumes, Philos. Mag. 100 (2020), pp. 2677–2707.
  • J. Guilleminot, A. Noshadravan, C. Soize, and R.G. Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Comput. Methods Appl. Mech. Eng. 200 (2011), pp. 1637–1648.
  • M. Kühn and M.O. Steinhauser, Modeling and simulation of microstructures using power diagrams: Proof of the concept, Appl. Phys. Lett. 93 (2008), Article ID 034102.
  • T. Xu and M. Li, Topological and statistical properties of a constrained Voronoi tessellation, Philos. Mag. 89 (2009), pp. 349–374.
  • A. Alpers, M. Fiedler, P. Gritzmann, and F. Klemm, SIAM J. Imaging Sci. 16 (2023), pp. 223–249.
  • A. Brieden, P. Gritzmann, and F. Klemm, Constrained clustering via diagrams: A unified theory and its application to electoral district design, Eur. J. Oper. Res. 263 (2017), pp. 18–34.
  • P. Gritzmann and V. Klee, Computational convexity, in CRC Handbook on Discrete and Computational Geometry, J.E. Goodman, J. O'Rourke, and C.D. Toth, eds., 3rd extended ed., 2017, pp. 937–968.
  • T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer, New York, 2009.
  • P.A. Lachenbruch and M. Goldstein, Discriminant analysis, Biometrics 35 (1979), p. 69.
  • J. Zhang, W. Ludwig, Y. Zhang, H.H.B. Sørensen, D.J. Rowenhorst, A. Yamanaka, P.W. Voorhees, and H.F. Poulsen, Grain boundary mobilities in polycrystals, Acta Mater. 191 (2020), pp. 211–220.
  • W. Ludwig, S. Schmidt, E.M. Lauridsen, and H.F. Poulsen, X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case, J. Appl. Crystallogr. 41 (2008), pp. 302–309.
  • G. Johnson, A. King, M.G. Honnicke, J. Marrow, and W. Ludwig, X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case, J. Appl. Crystallogr. 41 (2008), pp. 310–318.
  • A. Bhattachary, Y.-F. Shen, C.M. Hefferan, S. Fai Li, J. Lind, R.M. Suter, and G.S. Rohrer, Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni, Acta Mater. 167 (2019), pp. 40–50.
  • V. Muralikrishnan, H. Liu, L. Yang, B. Conry, C.J. Marvel, M.P. Harmer, G.S. Rohrer, M.R. Tonks, R.M. Suter, C.E. Krill III, and A.R. Krause, Observations of unexpected grain boundary migration in SrTiO3, Scr. Mater. 222 (2023), Article ID 115055.