946
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Rate-controlling deformation mechanisms in drawn tungsten wires

ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1029-1047 | Received 16 Sep 2022, Accepted 26 Jan 2023, Published online: 13 Mar 2023

References

  • E. Lassner and W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, 1st ed., Springer, 1999.
  • G.W. Meetham and M.H. van de Voorde, Refractory metals, in Materials for High Temperature Engineering Applications, G.W. Meetham and M.H. van de Voorde, eds., Springer, Berlin, Heidelberg, 2000, pp. 86–89.
  • T. Hirai, S. Panayotis, V. Barabash, C. Amzallag, F. Escourbiac, A. Durocher, M. Merola, J. Linke, T. Loewenhoff, G. Pintsuk, M. Wirtz, and I. Uytdenhouwen, Use of tungsten material for the ITER divertor, Nucl. Mater. Energy 9 (2016), pp. 616–622.
  • C. Bonnekoh, U. Jäntsch, J. Hoffmann, H. Leiste, A. Hartmaier, D. Weygand, A. Hoffmann, and J. Reiser, The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallographic texture, grain size and dislocation density on the transition temperature, Int. J. Refract. Met. Hard Mater. 78 (2019), pp. 146–163.
  • A. Giannattasio and S.G. Roberts, Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten, Philos. Mag. 87 (2007), pp. 2589–2598.
  • C.L. Briant and B.P. Bewlay, The coolidge process for making tungsten ductile: The foundation of incandescent lightning, MRS Bull. 20 (1995), pp. 67–73.
  • W.D. Coolidge, Tungsten and method of making the same for use as filaments of incandescent electric lamps and for other purposes, U.S. Patent 1 226 470, July 19, 1912.
  • C. Bonnekoh, A. Hoffmann, and J. Reiser, The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to 65∘C, Int. J. Refract. Met. Hard Mater. 71 (2018), pp. 181–189.
  • I.V. Alexandrov, G.I. Raab, V.U. Kazyhanov, L.O. Sheastakova, R.Z. Valiev, and R.J. Dowding, Ultrafine-grained tungsten produced by SPD techniques, in Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Setniatin, M. J. Saran, and T. C. Lowe, eds., Proceedings of a Symposium Sponsored by the Shaping and Forming Committee of the Materials Processing and Manufacturing Division (MPMD) and the Mechanical Behavior Committee (Jt. SMD/ASM–MSCTS) of the Structural Materials Division (SMD) of TMS, Seattle, Washington, John Wiley & Sons, Inc., New York, 2002, pp. 199–207.
  • B. Mainzer, C. Lin, M. Frieß, R. Riedel, J. Riesch, A. Feichtmayer, M. Fuhr, J. Almanstötter, and D. Koch, Novel ceramic matrix composites with tungsten and molybdenum fiber reinforcement, J. Eur. Ceram. Soc. 41 (2021), pp. 3030–3036.
  • R. Neu, J. Riesch, A. Müller, M. Balden, J.W. Coenen, H. Gietl, T. Höschen, M. Li, S. Wurster, and J.H. You, Tungsten fibre-reinforced composites for advanced plasma facing components, Nucl. Mater. Energy 12 (2017), pp. 1308–1313.
  • L.L. Seigle and C.D. Dickinson, Refractory Metals and Alloys: Effect of Mechanical and Structural Variables on the Ductile-Brittle Transition in Refractory Metals, Interscience, New York, 1963.
  • O. Boser, The temperature dependence of the flow-stress of heavily-deformed tungsten, J. Less-Common Met. 23 (1971), pp. 427–435.
  • E. Pink and I. Gaál, Mechanical properties and deformation mechanisms of non-sag tungsten wires, in The Metallurgy of Doped/Non-Sag Tungsten, E. Pink and L. Bartha, eds., Elsevier Applied Science, Essex, 1989, pp. 209–234.
  • A. Seeger, The temperature dependence of the critical shear stress and of work-hardening of metal crystals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (1954), pp. 771–773.
  • H. Conrad, Thermally activated deformation of metals, J. Met. 16 (1964), pp. 582–588.
  • D. Brunner, Comparison of flow-stress measurements on high-purity tungsten single crystals with the kink-pair theory, Mater. Trans. 41 (2000), pp. 152–160.
  • D. Caillard and J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity, 1st ed., Pergamon Material Series, Vol. 8, Pergamon, Amsterdam, 2003.
  • H. Conrad, Yielding and flow of B.C.C metals at low temperatures, in The Relation Between the Structure and Mechanical Properties of Metals: Proceedings, National Physical Laboratory (Great Britain). Metallurgy Division, ed., Symposium (National Physical Laboratory (Great Britain))), H.M. Stationery Office, 1963.
  • A. Seeger, Peierls barriers, kinks, and flow stress: Recent progress, Z. Für Metallkunde 93 (2002), pp. 760–777.
  • F. Ackermann, H. Mughrabi, and A. Seeger, Temperature- and strain-rate dependence of the flow stress of ultrapure niobium single crystals in cyclic deformation, Acta Metall. 31 (1983), pp. 1353–1366.
  • D. Brunner and J. Diehl, Strain-rate and temperature dependence of the tensile flow stress of high-purity-iron above 250 K (Regime I) studied by means of stress-relaxation tests, Phys. Status Solidi A 124 (1991), pp. 155–170.
  • D. Brunner and J. Diehl, Temperature and strain-rate dependence of the tensile flow stress of high-purity-iron below 250 K: II. Stress/temperature regime II and its transitions to regimes I and III, Phys. Status Solidi A 125 (1991), pp. 203–216.
  • D. Brunner and J. Diehl, Temperature and strain-rate dependence of the tensile flow stress of high-purity-iron below 250 K. I. Stress/temperature regime III, Phys. Status Solidi A 124 (1991), pp. 455–464.
  • L. Hollang, D. Brunner, and A. Seeger, Work hardening and flow stress of ultrapure molybdenum single crystals, Mater. Sci. Eng. A 319–321 (2001), pp. 233–236.
  • L. Hollang, M. Hommel, and A. Seeger, The flow stress of ultra-high-purity molybdenum single crystals, Phys. Status Solidi A 160 (1997), pp. 329–354.
  • A. Seeger and U. Holzwarth, Slip planes and kink properties of screw dislocations in high-purity niobium, Philos. Mag. 86 (2006), pp. 3861–3892.
  • A. Seeger, The temperature and strain-rate dependence of the flow stress of body-centred cubic metals: A theory based on kink-kink interactions, Int. J. Mater. Res. 72 (1981), pp. 369–380.
  • M. Werner, Temperature and strain-rate dependence of the flow stress of ultrapure tantalum single crystals, Phys. Status Solidi A 104 (1987), pp. 63–78.
  • J.A. Mullendore, The technology of doped-tungsten wire manufacturing, in The Metallurgy of Doped/Non-Sag Tungsten, E. Pink and L. Bartha, eds., Elsevier Applied Science, Essex, 1989, pp. 61–82.
  • E. Pink and L. Bartha, eds., The Metallurgy of Doped/Non-Sag Tungsten, 1st ed., Elsevier Applied Science, Essex, 1989.
  • J. Riesch, Y. Han, J. Almanstötter, J.W. Coenen, T. Höschen, B. Jasper, P. Zhao, C. Linsmeier, and R. Neu, Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO–potassium doped tungsten wire, Phys. Scr. T167 (2016), pp. 014006.
  • R. Lowrie and A.M. Gonas, Single-crystal elastic properties of tungsten from 24∘ to 1800∘C, J. Appl. Phys. 38 (1967), pp. 4505–4509.
  • J.R. Davis, Tensile Testing, 1st ed., ASM International, Ohio, 2004.
  • D.G. Morris, Strengthening Mechanisms in Nanocrystalline Metals, in Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, W. H. Wang, eds., Woodhead Publishing, Sawston and Elevier, Amsterdam, 2011, pp. 299–328.
  • P. Spätig, J. Bonneville, and J.L. Martin, A new method for activation volume measurements: Application to Ni3(Al,Hf), Mater. Sci. Eng. A 167 (1993), pp. 73–79.
  • D. Brunner and V. Glebovsky, Analysis of flow-stress measurements of high-purity tungsten single crystals, Mater. Lett. 44 (2000), pp. 144–152.
  • D. Kiener, R. Fritz, M. Alfreider, A. Leitner, R. Pippan, and V. Maier-Kiener, Rate limiting deformation mechanisms of BCC metals in confined volumes, Acta. Mater. 166 (2019), pp. 687–701.
  • J. Kappacher, A. Leitner, D. Kiener, H. Clemens, and V. Maier-Kiener, Thermally activated deformation mechanisms and solid solution softening in W-Re alloys investigated via high temperature nanoindentation, Mater. Des. 189 (2020), pp. 108499.
  • S.W. Bonk, Plastische Verformungsmechanismen in hochgradig kaltgewalzten, ultrafeinkörnigen Wolframblechen, Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, 2018.
  • Y.M. Wang, A.V. Hamza, and E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni, Acta. Mater. 54 (2006), pp. 2715–2726.
  • J. Gubicza, Defect Structure and Properties of Nanomaterials, 1st ed., Elsevier, 2017.
  • T. Millner, L. Varga, and B. Verö, The role of fibre boundaries during drawing of powder metallurgical tungsten wires, Z. Für Metallkunde 63 (1972), pp. 754–756.
  • H. Schultz, Untersuchungen über Gitterfehlstellen in kaltverformtem Wolfram mit Hilfe von Restwiderstandsmessungen, Z. Für Naturkunde 14 (1959), pp. 361–373.
  • F. Javaid and K. Durst, Stress-driven grain boundary movement during nanoindentation in tungsten at room temperature, Materialia 1 (2018), pp. 99–103.
  • R.N. Stevens, Grain-boundary sliding in metals, Metall. Rev. 11 (1966), pp. 129–142.
  • R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002), pp. 5–8.
  • B.G. Butler, J.D. Paramore, J.P. Ligda, C. Ren, Z.Z. Fang, S.C. Middlemas, and K.J. Hemker, Mechanisms of deformation and ductility in tungsten – a review, Int. J. Refract. Met. Hard Mater. 75 (2018), pp. 248–261.
  • Q. Wei, S. Cheng, K. Ramesh, and E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: FCC versus BCC metals, Mater. Sci. Eng. A 381 (2004), pp. 71–79.
  • T. Kruml, O. Coddet, and J.L. Martin, About the determination of the thermal and athermal stress components from stress-relaxation experiments, Acta. Mater. 56 (2008), pp. 333–340.
  • T. Kruml, O. Coddet, G. Saada, and J.L. Martin, Stress reduction experiments during constant-strain-rate tests in Cu and Ge, Philos. Mag. Lett. 83 (2003), pp. 651–658.
  • G.B. Gibbs, The activation parameters for dislocation glide, Philos. Mag. 16 (1967), pp. 97–102.