80
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electromagnetic response of cuprate superconductors with coexisting electronic nematicity

, , & ORCID Icon
Pages 1360-1395 | Received 02 Nov 2022, Accepted 29 Mar 2023, Published online: 20 Apr 2023

References

  • J.G. Bednorz and K.A. Müller, Possible high Tc superconductivity in the ba-La-Cu-O system, Z. Phys. B 64(2) (1986), pp. 189–193.
  • M.A. Kastner, R.J. Birgeneau, G. Shirane, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Rev. Mod. Phys. 70(3) (1998), pp. 897–928.
  • P.W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793) (1987), pp. 1196–1198.
  • I.K. Drozdov, I. Pletikosić, C. -K. Kim, K. Fujita, G.D. Gu, J.C.S. Davis, P.D. Johnson, I. Boz̃ović, and T. Valla, Phase diagram of Bi2Sr2CaCu2O8+δ revisited, Nat. Commun. 9(1) (2018), pp. 1–7.
  • S.L. Cooper and K.E. Grey, Anisotropy and interlayer coupling in the high Tc cuprates, in Physical Properties of High Temperature Superconductors IV, D. M. Ginsberg ed., World Scientific, Singapore, 1994, pp. 61.
  • K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, Interplane charge transport in YBa2Cu3O7−y: Spin-gap effect on in-plane and out-of-plane resistivity, Phys. Rev. B 50(9) (1994), pp. 6534–6537.
  • I.M. Vishik, Photoemission perspective on pseudogap, superconducting fluctuations, and charge order incuprates: A review of recent progress, Rep. Prog. Phys. 81(6) (2018), pp. 062501.
  • R. Comin and A. Damascelli, Resonant x-ray scattering studies of charge order in cuprates, Annu. Rev. Condens. Matter Phys. 7(1) (2016), pp. 369–405.
  • E. Fradkin, S.A. Kivelson, and J.M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87(2) (2015), pp. 457–482.
  • S.A. Kivelson and S. Lederer, Linking the pseudogap in the cuprates with local symmetry breaking: A commentary, Proc. Natl. Acad. Sci. 116(29) (2019), pp. 14395–14397.
  • M. Vojta, Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity, Adv. Phys. 58(6) (2009), pp. 699–820.
  • E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein, and A.P. Mackenzie, Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys. 1(1) (2010), pp. 153–178.
  • R.M. Fernandes, P.P. Orth, and J. Schmalian, Intertwined vestigial order in quantum materials: Nematicity and beyond, Annu. Rev. Condens. Matter Phys. 10(1) (2019), pp. 133–154.
  • S. Nakata, M. Horio, K. Koshiishi, K. Hagiwara, C. Lin, M. Suzuki, S. Ideta, K. Tanaka, D. Song, Y. Yoshida, H. Eisaki, and A. Fujimori, Nematicity in a cuprate superconductor revealed by angle-resolved photoemission spectroscopy under uniaxial strain, npj Quantum Mater. 6(1) (2021), pp. 1–6.
  • M.J. Lawler, K. Fujita, J. Lee, A.R. Schmidt, Y. Kohsaka, C.K. Kim, H. Eisaki, S. Uchida, J.C. Davis, J.P. Sethna, and E.-A. Kim, Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states, Nature 466(7304) (2010), pp. 347–351.
  • K. Fujita, C.K. Kim, I. Lee, J. Lee, M.H. Hamidian, I.A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M.J. Lawler, E.-A. Kim, and J.C. Davis, Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking, Science 344(6184) (2014), pp. 612–616.
  • Y. Zheng, Y. Fei, K. Bu, W. Zhang, Y. Ding, X.J. Zhou, J.E. Hoffman, and Y. Yin, The study of electronic nematicity in an overdoped (Bi,Pb)2Sr2CuO6+δ superconductor using scanning tunneling spectroscopy, Sci. Rep.7(1) (2017), pp. 1–8.
  • S. Mukhopadhyay, R. Sharma, C.K. Kim, S.D. Edkins, M.H. Hamidian, H. Eisaki, S. Uchida, E.-A. Kim, M.J. Lawler, A.P. Mackenzie, J.C.S. Davis, and K. Fujita, Evidence for a vestigial nematic state in the cuprate pseudogap phase, Proc. Natl. Acad. Sci. 116(27) (2019), pp. 13249–13254.
  • N. Auvray, B. Loret, S. Benhabib, M. Cazayous, R.D. Zhong, J. Schneeloch, G.D. Gu, A. Forget, D. Colson, I. Paul, A. Sacuto, and Y. Gallais, Nematic fluctuations in the cuprate superconductor Bi2Sr2CaCu2O8+δ, Nat. Commun. 10(1) (2019), pp. 5209.
  • V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C.T. Lin, and B. Keimer, Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45, Science 319(5863) (2008), pp. 597–600.
  • Y. Sato, S. Kasahara, H. Murayama, Y. Kasahara, E.-G. Moon, T. Nishizaki, T. Loew, J. Porras, B. Keimer, T. Shibauchi, and Y. Matsuda, Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy, Nat. Phys. 13(11) (2017), pp. 1074–1078.
  • R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choiniére, F. Laliberté, N. Doiron-Leyraud, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, and L. Taillefer, Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor, Nature 463(7280) (2010), pp. 519–522.
  • O. Cyr-Choiniére, G. Grissonnanche, S. Badoux, J. Day, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, and L. Taillefer, Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy, Phys. Rev. B 92(22) (2015), pp. 224502.
  • W. Wang, J. Luo, C.G. Wang, J. Yang, Y. Kodama, R. Zhou, and G.-Q Zheng, Microscopic evidence for the intra-unit-cell electronic nematicity inside the pseudogap phase in YBa2Cu4O8, Sci. China-Phys. Mech. Astron. 64(3) (2021), pp. 237413.
  • Y. Ando, K. Segawa, S. Komiya, and A.N. Lavrov, Electrical resistivity anisotropy from self-organized one-dimensionality in high-temperature superconductors, Phys. Rev. Lett. 88(13) (2002), pp. 137005.
  • J. Wu, A.T. Bollinger, X. He, and I. Boz̃ović, Spontaneous breaking of rotational symmetry in copper oxide superconductors, Nature 547(7664) (2017), pp. 432–435.
  • K. Ishida, S. Hosoi, Y. Teramoto, T. Usui, Y. Mizukami, K. Itaka, Y. Matsuda, T. Watanabe, and T. Shibauchi, Divergent nematic susceptibility near the pseudogap critical point in a cuprate superconductor, J. Phys. Soc. Jpn. 91(2022), pp. 1–6.
  • J.R. Schrieffer, Theory of Superconductivity, Benjamin, New York, 1964.
  • D.A. Bonn and W.N. Hardy, Microwave surface impedance of high temperature superconductors, in Physical Properties of High Temperature superconductors .V.D.M. Ginsberg, eds., World Scientific, Singapore, 1996. pp. 67.
  • J.E. Sonier, J. H. Brewer, and R. F. Kiefl, μSR studies of the vortex state in type-II superconductors, Rev. Mod. Phys. 72(3) (2000), pp. 769–811.
  • D.N. Basov and T. Timusk, Electrodynamics of high-Tc superconductors, Rev. Mod. Phys. 77(2) (2005), pp. 721–779.
  • J.E. Sonier, μSR studies of cuprate superconductors, J. Phys. Soc. Jpn. 85(9) (2016), pp. 091005.
  • A. Hosseini, S. Kamal, D.A. Bonn, R. Liang, and W.N. Hardy, ĉ-Axis electrodynamics of YBa2Cu3O7−δ, Phys. Rev. Lett. 81(6) (1998), pp. 1298–1301.
  • A. Hosseini, D.M. Broun, D.E. Sheehy, T.P. Davis, M. Franz, W.N. Hardy, R. Liang, and D.A. Bonn, Survival of the d-wave superconducting state near the edge of antiferromagnetism in the cuprate phase diagram, Phys. Rev. Lett. 93(10) (2004), pp. 107003.
  • T.J. Jackson, T.M. Riseman, E.M. Forgan, H. Glückler, T. Prokscha, E. Morenzoni, M. Pleines, C.H. Niedermayer, G. Schatz, H. Luetkens, and J. Litterst, Depth-resolved profile of the magnetic field beneath the surface of a superconductor with a few nm resolution, Phys. Rev. Lett. 84(21) (2000), pp. 4958–4961.
  • R. Khasanov, D.G. Eshchenko, H. Luetkens, E. Morenzoni, T. Prokscha, A. Suter, N. Garifianov, M. Mali, J. Roos, K. Conder, and H. Keller, Direct observation of the oxygen isotope effect on the in-plane magnetic field penetration depth in optimally doped YBa2Cu3O7−δ, Phys. Rev. Lett. 92(5) (2004), pp. 057602.
  • A. Suter, E. Morenzoni R. Khasanov, H. Luetkens, T. Prokscha, and N. Garifianov, Direct observation of nonlocal effects in a superconductor, Phys. Rev. Lett. 92(8) (2004), pp. 087001.
  • I. Božović, X. He, J. Wu, and A.T. Bollinger, Dependence of the critical temperature in overdoped copper oxides on superfluid density, Nature 536(7616) (2016), pp. 309–311.
  • J.H. Brewer, S.L. Stubbs, R. Liang, D.A. Bonn, W.N. Hardy, J.E. Sonier, W.A. MacFarlane, and D.C. Peets, Signatures of new d-wave vortex physics in overdoped Tl2Ba2CuO6+x revealed by TF−μ+SR, Sci. Rep. 5(1) (2015), pp. 14156.
  • D. Deepwell, D.C. Peets, C.J.S. Truncik, N.C. Murphy, M.P. Kennett, W.A. Huttema, R. Liang, D.A. Bonn, W.N. Hardy, and D.M. Broun, Microwave conductivity and superfluid density in strongly overdoped Tl2Ba2CuO6+δ, Phys. Rev. B 88(21) (2013), pp. 214509.
  • D.M. Broun, W.A. Huttema, P.J. Turner, S. Özcan, B. Morgan, R. Liang, W.N. Hardy, and D.A. Bonn, Superfluid density in a highly underdoped YBa2Cu3O6+y superconductor, Phys. Rev. Lett. 99(23) (2007), pp. 237003.
  • M.S. Kim, J.A. Skinta, T.R. Lemberger, A. Tsukada, and M. Naito, Magnetic penetration depth measurements of Pr2−xCexCuO4−δ films on buffered substrates: Evidence for a nodeless gap, Phys. Rev. Lett. 91(8) (2003), pp. 087001.
  • C. Panagopoulos, B.D. Rainford, J.R. Cooper, W. Lo, J.L. Tallon, J.W. Loram, J. Betouras, Y.S. Wang, and C.W. Chu, Effects of carrier concentration on the superfluid density of high-Tc cuprates, Phys. Rev. B 60(21) (1999), pp. 14617–14620.
  • S.F. Lee, D.C. Morgan, R.J. Ormeno, D.M. Broun, R.A. Doyle, J.R. Waldram, and K. Kadowaki, a-b plane microwave surface impedance of a high-quality Bi2Sr2CaCu2O8 single crystal, Phys. Rev. Lett. 77(4) (1996), pp. 735–738.
  • W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, and K. Zhang, Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95: Strong evidence for nodes in the gap function, Phys. Rev. Lett.70(25) (1993), pp. 3999–4002.
  • T.R. Lemberger, I. Hetel, A. Tsukada, M. Naito, and M. Randeria, Superconductor-to-metal quantum phase transition in overdoped La2−xSrxCuO4, Phys. Rev. B 83(14) (2011), pp. 140507.
  • R. Liang, D.A. Bonn, and W.N. Hardy, Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals, Phys. Rev. B 73(18) (2006), pp. 180505.
  • C. Bernhard, J.L. Tallon, T.H. Blasius, A. Golnik, and C.H. Niedermeyer, Anomalous peak in the superconducting condensate density of cuprate high-Tc superconductors at a unique doping state, Phys. Rev. Lett. 86(8) (2001), pp. 1614–1617.
  • K. Zhang, D.A. Bonn, S. Kamal, R. Liang, D.J. Baar, W.N. Hardy, D. Basov, and T. Timusk, Measurement ofthe ab plane anisotropy of microwave surface impedance of untwinned YBa2Cu3O6.95 single crystals, Phys. Rev. Lett. 73(18) (1994), pp. 2484–2487.
  • D.N. Basov, R. Liang, D.A. Bonn, W.N. Hardy, B. Dabrowski, M. Quijada, D.B. Tanner, J.P. Rice, D.M. Ginsberg, and T. Timusk, In-Plane anisotropy of the penetration depth in YBa2Cu3O7−x and YBa2Cu4O8 superconductors, Phys. Rev. Lett. 74(4) (1995), pp. 598–601.
  • A.G. Sun, S.H. Han, A.S. Katz, D.A. Gajewski, M.B. Maple, and R.C. Dynes, Anisotropy of the penetration depth in YBa2Cu3O7−δ: Josephson-Tunneling studies, Phys. Rev. B 52(22) (1995), pp. R15731–R15733.
  • T. Pereg-Barnea, P.J. Turner, R. Harris, G.K. Mullins, J.S. Bobowski, M. Raudsepp, R. Liang, D.A. Bonn, and W.N. Hardy, Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on gd doped single crystals, Phys. Rev. B 69(18) (2004), pp. 184513.
  • R.F. Kiefl, M.D. Hossain, B.M. Wojek, S.R. Dunsiger, G.D. Morris, T. Prokscha, Z. Salman, J. Baglo, D.A. Bonn, R. Liang, W.N. Hardy, A. Suter, and E. Morenzoni, Direct measurement of the London penetration depth in YBa2Cu3O6.92 using low-energy μSR, Phys. Rev. B 81(18) (2010), pp. 180502.
  • Z. Zhang, R. Sutarto, F. He, F.C. Chou, L. Udby, S.L. Holm, Z.H. Zhu, W.A. Hines, J.I. Budnick, and B.O. Wells, Nematicity and charge order in superoxygenated La2−xSrxCuO4+y, Phys. Rev. Lett. 121(6) (2018), pp. 067602.
  • E. Razzoli, C.E. Matt, Y. Sassa, M. Mânsson, O. Tjernberg, G. Drachuck, M. Monomo, M. Oda, T. Kurosawa, Y. Huang, N.C. Plumb, M. Radovic, A. Keren, L. Patthey, J. Mesot, and M. Shi, Rotation symmetry breaking in La2−xSrxCuO4 revealed by angle-resolved photoemission spectroscopy, Phys. Rev. B 95(22) (2017), pp. 224504.
  • M.A. Quijada, D.B. Tanner, R.J. Kelley, M. Onellion, H. Berger, and G. Margaritondo, Anisotropy in the ab-plane optical properties of Bi2Sr2CaCu2O8 single-domain crystals, Phys. Rev. B 60(21) (1999), pp. 14917–14934.
  • N.M. Plakida and V.S. Oudovenko, s+d pairing in orthorhombic phase of copper-oxides, Phys. C 341 (2000), pp. 289–290.
  • B. Edegger, V.N. Muthukumar, and C. Gros, Spontaneous breaking of the Fermi-surface symmetry in the t-J model: A numerical study, Phys. Rev. B 74(16) (2006), pp. 165109.
  • A. Miyanaga and H. Yamase, Orientational symmetry-breaking correlations in square lattice t-J model, Phys. Rev. B 73(17) (2006), pp. 174513.
  • A. Wollny and M. Vojta, Photoemission signatures of valence-bond stripes in cuprates: Long-range vs. short-range order, Phys. B 404(19) (2009), pp. 3079–3084.
  • M. Kitatani, N. Tsuji, and H. Aoki, Interplay of pomeranchuk instability and superconductivity in the two-dimensional repulsive hubbard model, Phys. Rev. B 95(7) (2017), pp. 075109.
  • T.A. Maier and D.J. Scalapino, Pairing interaction near a nematic quantum critical point of a three-band CuO2 model, Phys. Rev. B 90(17) (2014), pp. 174510.
  • S. Lederer, Y. Schattner, E. Berg, and S.A. Kivelson, Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett. 114(9) (2015), pp. 097001.
  • J. Kaczmarczyk, T. Schickling, and J. Bünemann, Coexistence of nematic order and superconductivity in the Hubbard model, Phys. Rev. B 94(8) (2016), pp. 085152.
  • S. Lederer, Y. Schattner, E. Berg, and S.A. Kivelson, Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point, Proc. Natl. Acad. Sci. 114(19) (2017), pp. 4905–4910.
  • Y.-J. Kao and H.-Y. Kee, Anisotropic spin and charge excitations in superconductors: Signature of electronic nematic order, Phys. Rev. B 72(2) (2005), pp. 024502.
  • K. Lee, S.A. Kivelson, and E.-A. Kim, Cold-spots and glassy nematicity in underdoped cuprates, Phys. Rev. B 94(1) (2016), pp. 014204.
  • Z. Cao, Y. Liu, H. Guo, and S. Feng, Enhancement of superconductivity by electronic nematicity in cuprate superconductors, Phil. Mag. 102(10) (2022), pp. 918–962.
  • Z. Cao, X. Ma, Y. Liu, H. Guo, and S. Feng, Characteristic energy of the nematic-order state and its connection to enhancement of superconductivity in cuprate superconductors, Phys. Rev. B 104(22) (2021), pp. 224503.
  • Y. Liu, Y. Mou, and S. Feng, Doping dependence of electromagnetic response in cuprate superconductors, J. Supercond. Nov. Magn. 33(1) (2020), pp. 69–79.
  • S. Feng, J.B. Wu, Z.B. Su, and L. Yu, Slave-particle studies of the electron-momentum distribution in the low-dimensional t-J model, Phys. Rev. B 47(22) (1993), pp. 15192–15200.
  • L. Zhang, J.K. Jain, and V.J. Emery, Importance of the local constraint in Slave-Boson theories, Phys. Rev. B 47(6) (1993), pp. 3368–3373.
  • L. Yu, Many-body problems in high temperature superconductors, in Recent Progress in Many-Body Theories.3.T. L. Ainsworth et al., eds., Plenum, New York, 1992. pp. 157.
  • P.A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1) (2006), pp. 17–85.
  • B. Edegger, V.N. Muthukumar, and C. Gros, Gutzwiller−RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations, Adv. Phys. 56(6) (2007), pp. 927–1033.
  • S. Feng, J. Qin, and T. Ma, A gauge invariant dressed holon and spinon description of the normal-state of underdoped cuprates, J. Phys. Condens. Matter 16(3) (2004), pp. 343–359.
  • S. Feng, Z.B. Su, and L. Yu, Fermion-Spin transformation to implement the charge-Spin separation, Phys. Rev. B 49(4) (1994), pp. 2368–2384.
  • S. Feng, Y. Lan, H. Zhao, L. Kuang, L. Qin, and X. Ma, Kinetic-energy driven superconductivity in cuprate superconductors, Int. J. Mod. Phys. B 29(16) (2015), pp. 1530009.
  • H. Iwasawa, J.F. Douglas, K. Sato, T. Masui, Y. Yoshida, Z. Sun, H. Eisaki, H. Bando, A. Ino, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, S. Tajima, S. Uchida, T. Saitoh, D.S. Dessau, and Y. Aiura, Isotopic fingerprint of electron-Phonon coupling in high-Tc cuprates, Phys. Rev. Lett. 101(15) (2008), pp. 157005.
  • X.J. Zhou, T. Cuk, T. Devereaux, N. Nagaosa, and Z.-X. Shen, Angle-resolved photoemission spectroscopy on electronic structure and electron-phonon coupling in cuprate superconductors, in Handbook of High-Temperature Superconductivity: Theory and Experiment, J.R. Schrieffer, eds., Springer, 2007. pp. 87–144.
  • O. Rosch and O. Gunnarsson, Electron-Phonon interaction in the t-J model, Phys. Rev. Lett. 92(14) (2004), pp. 146403.
  • O. Rosch and O. Gunnarsson, Apparent electron–phonon interaction in strongly correlated systems, Phys. Rev. Lett. 93(23) (2004), pp. 237001.
  • A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors, Nature 412(6846) (2001), pp. 510–514.
  • P. Monthoux, A.V. Balatsky, and D. Pines, Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides, Phys. Rev. Lett. 67(24) (1991), pp. 3448–3451.
  • P. Monthoux, D. Pines, and G.G. Lonzarich, Superconductivity without phonons, Nature 450(7173) (2007), pp. 1177–1183.
  • S. Feng, Kinetic energy driven superconductivity in doped cuprates, Phys. Rev. B 68(18) (2003), pp. 184501.
  • S. Feng, T. Ma, and H. Guo, Magnetic nature of superconductivity in doped cuprates, Phys. C 436(1) (2006), pp. 14–24.
  • S. Feng, H. Zhao, and Z. Huang, Two gaps with one energy scale in cuprate superconductors, Phys. Rev. B 85(5) (2012), pp. 054509; Phys. Rev. B. Vol. 85, (2012), pp. 099902.
  • S. Feng, L. Kuang, and H. Zhao, Electronic structure of cuprate superconductors in a full charge-spin recombination scheme, Phys. C 517 (2015), pp. 5–15.
  • Y. Liu, Y. Lan, and S. Feng, Peak structure in the self-energy of cuprate superconductors, Phys. Rev. B 103(2) (2021), pp. 024525.
  • H. Matsui, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Fujii, T. Watanabe, and A. Matsuda, BCS-like bogoliubov quasiparticles in high-Tc superconductors observed by angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 90(21) (2003), pp. 217002.
  • J.C. Campuzano, H. Ding, M.R. Norman, M. Randeira, A.F. Bellman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, and K. Kadowaki, Direct observation of particle-hole mixing in the superconducting state by angle-resolved photoemission, Phys. Rev. B 53(22) (1996), pp. R14737–R14740.
  • H. Fukuyama, H. Ebisawa, and Y. Wada, Theory of Hall effect. I: Nearly free electron, Prog. Theor. Phys. 42(3) (1969), pp. 494–511.
  • H. Fukuyama, Theory of Hall effect. II: Bloch electrons, Prog. Theor. Phys. 42(6) (1969), pp. 1284–1303.
  • S. Misawa, Meissner effect and gauge invariance in anisotropic narrow-hand Bloch-electron and hole-type superconductors, Phys. Rev. B 49(9) (1994), pp. 6305–6311.
  • T. Kostyrko, R. Micnas, and K.A. Chao, Gauge-invariant theory of the meissner effect in the lattice model of a superconductor with local pairing, Phys. Rev. B 49(9) (1994), pp. 6158–6161.
  • A.A. Abrikosov, Fundamentals of the Theory of Metals, North-Holland, Amsterdan, 1988.
  • M. Tinkham, Introduction to Superconductivity, Appendix 3, McGraw-Hill, 1996.queryPlease provide the missing city/state name for ref. [97].
  • T.-M. Chuang, M.P. Allan, J. Lee, Y. Xie, N. Ni, S.L. Budḱo, G.S. Boebinger, P.C. Canfield, and J.C. Davis, Nematic electronic structure in the parent state of the iron-based superconductor ca(Fe1CxCox)2As2, Science 327(5962) (2010), pp. 181–184.
  • Y. Gallais, R.M. Fernandes, I. Paul, L. Chauviére, Y.-X. Yang, M.-A. Méasson, M. Cazayous, A. Sacuto, D. Colson, and A. Forget, Observation of incipient charge nematicity in ba(Fe1CxCox)2As2, Phys. Rev. Lett. 111(26) (2013), pp. 1–5.
  • P. Massat, D. Farina, I. Paul, S. Karlsson, P. Strobel, P. Toulemonde, M.-A. Méasson, M. Cazayous, A. Sacuto, S. Kasahara, T. Shibauchi, Y. Matsuda, and Y. Gallais, Charge-induced nematicity in FeSe, Proc. Natl. Acad. Sci. 113(33) (2016), pp. 9177–9181.
  • S.-H.O. Baek, J.M. Ok, J.S. Kim, S. Aswartham, I. Morozov, D. Chareev, T. Urata, K. Tanigaki, Y. Tanabe, B. Buchner, and D.V. Efremov, Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe, npj Quantum Mater. 5(1) (2020), pp. 1–5.
  • R.A. Borzi, S.A. Grigera, J. Farrell, R.S. Perry, S.J.S. Lister, S.L. Lee, D.A. Tennant, Y. Maeno, and A.P. Mackenzie, Formation of a nematic fluid at high fields in sr3Ru2O7, Science 315(5809) (2007), pp. 214–217.
  • C. Eckberg, D.J. Campbell, T. Metz, J. Collini, H. Hodovanets, T. Drye, P. Zavalij, M.H. Christensen, R.M. Fernandes, S. Lee, P. Abbamonte, J.W. Lynn, and J. Paglione, Sixfold enhancement of superconductivity in a tunable electronic nematic system, Nat. Phys. 16(3) (2020), pp. 346–350.
  • D.L. Feng, D.H. Lu, K.M. Shen, C. Kim, H. Eisaki, A. Damascelli, R. Yoshizaki, J.-i. Shimoyama, K. Kishio, G.D. Gu, S. Oh, A. Andrus, J. O'Donnell, J.N. Eckstein, and Z.-X. Shen, Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ, Science 289(5477) (2000), pp. 277–281.
  • H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. Hinks, Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission, Phys. Rev. Lett. 87(22) (2001), pp. 1–4.
  • A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75(2) (2003), pp. 473–541.
  • J.C. Campuzano, M.R. Norman, and M. Randeira, Photoemission in the High-Tc Superconductors, in Physics of Superconductors, Vol. II, K. H. Bennemann and J. B. Ketterson eds., Springer, Berlin, Heidelberg, New York, 2004, pp. 167–273.
  • J. Fink, S. Borisenko, A. Kordyuk, A. Koitzsch, J. Geck, V. Zabalotnyy, M. Knupfer, B. Buechner, and H. Berger, Dressing of the Charge Carriers in High-Tc Superconductors, in Lecture Notes in Physics, Vol. 715, S. Hüfner ed., Springer-Verlag Berlin Heidelberg, 2007, pp. 295–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.