68
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Doping induced phase transition, elastic, electronic, vibrational and thermal properties of LiBeA1—xSbx (A= P and As)

, &
Pages 1664-1690 | Received 04 Dec 2021, Accepted 12 Feb 2023, Published online: 13 May 2023

References

  • T. Gruhn, Comparative ab initio study of half-Heusler compounds for optoelectronic applications, Phys. Rev. B 82 (2010), pp. 125210-1–125210-10. https://doi.org/10.1103/PhysRevB.82.125210
  • J.W. Bennett, K.F. Garrity, K.M. Rabe, and D. Vanderbilt, Hexagonal A B C semiconductors as ferroelectrics, Phys. Rev. Lett.109 (2012), pp. 167602-1–167602-5. https://doi.org/10.1103/PhysRevLett.109.167602
  • J.W. Bennett, K.F. Garrity, K.M. Rabe, and D. Vanderbilt, Orthorhombic A B C semiconductors as antiferroelectrics, Phys. Rev. Lett. 110 (2013), pp. 017603-1–017603-5. https://doi.org/10.1103/PhysRevLett.110.017603
  • J.W. Bennett, K.F. Garrity, K.M. Rabe, and D. Vanderbilt, Supplemental material for orthorhombic ABC semiconductors as antiferroelectrics, Phys. Rev. Lett. 110 (2013), pp. 017603-1–017603-5. https://doi.org/10.1103/PhysRevLett.110.017603
  • X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Sorting stable versus unstable hypothetical compounds: The case of multi-functional ABX Half-Heusler filled tetrahedral structures, Adv. Funct. Mater. 22 (2012), pp. 1425–1435. https://doi.org/10.1002/adfm.201102546
  • X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Supporting information sorting stable versus unstable hypothetical compounds: The case of multi-functional ABX Half-Heusler filled tetrahedral structures, Adv. Funct. Mater. 22 (2012), pp. 1425–1435. https://doi.org/10.1002/adfm.201102546
  • D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B 81 (2010), pp. 075208-1–075208-6. https://doi.org/10.1103/PhysRevB.81.075208
  • Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds, Appl. Phys. Lett. 79 (2001), pp. 4165–4167. https://doi.org/10.1063/1.1425459
  • G.S. Nolas, J. Poon, and M. Kanatzidis, Recent developments in Bulk thermoelectric materials, MRS Bull. 31 (2006), pp. 199–205. https://doi.org/10.1557/mrs2006.45
  • B. Balke, J. Barth, M. Schwall, G.H. Fecher, and C. Felser, An alternative approach to improve the thermoelectric properties of Half-Heusler compounds, J. Electron. Mater. 40 (2011), pp. 702–706. https://doi.org/10.1007/s11664-011-1517-0
  • C. Tiburtius and H.-U. Schuster, Notizen: Die Kristallstruktur des LiBeAs / the crystal structure of LiBeAs, Z. Naturforech B 32 (1977), pp. 116–117. https://doi.org/10.1515/znb-1977-0128
  • A. El-Maslout, J.-P. Motte, and C. Gleitzer, Phosphures ternaires de lithium Li2n−3MnPn−1 (M = Be, Cd, Sn) de structure antifluorine ou dérivée, J. Solid State Chem. 7 (1973), pp. 250–254. https://doi.org/10.1016/0022-4596(73)90130-8
  • A. El-Maslout, J.-P. Motte, A. Courtois, and C. Gleitzer, Phosphures ternaires de lithium. II. Structure cristalline de LiBeP, J. Solid State Chem. 15 (1975), pp. 213–217. https://doi.org/10.1016/0022-4596(75)90204-2
  • B. Bennecer, F. Kalarasse, and L. Kalarasse, Structural, electronic and optical properties of LiBeP in its normal and high pressure phases, J. Phys. Chem. Solids 75 (2014), pp. 838–848. https://doi.org/10.1016/j.jpcs.2014.02.012
  • C. Tiburtius and H.-U. Schuster, LiBeSb und LiZnBi, ternäre verbindungen mit Wurtzitgerüst / LiBeSb and LiZnBi, ternary compounds with a Wurtzit-type lattice, Z. Naturforech. B 33 (1978), pp. 35–38. https://doi.org/10.1515/znb-1978-0108
  • J.-Q. Dai, J.-H. Zhu, and J.-W. Xu, Lattice dynamics, electronic structure, and optical properties of LiBeSb: A hexagonal ABC-type hyperferroelectrics, J. Appl. Phys. 120 (2016), pp. 034103-1–034103-7. https://doi.org/10.1063/1.4958848
  • N. Guechi, B. Bennecer, A. Hamidani, and ¸. Ugǔr, Pressure induced phase transition, electronic and optical properties of LiBeX (X = As, Sb and Bi), J. Phys.: Condens. Matter 32 (2020), pp. 325503-1–325503-14. https://doi.org/10.1088/1361-648X/ab85f2
  • M. Boualleg, B. Bennecer, and F. Kalarasse, Ab initio predictions of structures and physical properties of the KCuX (X = Se and Te) phases under pressure, Comput. Condens. Matter 30 (2022), pp. e00616-1–e00616-10. https://doi.org/10.1016/j.cocom.2021.e00616
  • S. Karfaf, B. Bennecer, G. Uǧur, and ¸. Uǧur, Phase transitions and lattice dynamics in perovskite-type hydride LixNa1−xMgH3, J. Phys.: Condens. Matter 31 (2019), pp. 505402-1–505402-17. https://doi.org/10.1088/1361-648X/ab3cfe
  • T. Pham, D. Faurie, P. Djemia, L. Belliard, E. Le Bourhis, P. Goudeau, and F. Paumier, Phase transition signature on elastic constants in Al1−xCrxNy ternary alloys thin films, J. Appl. Phys. 103 (2013), pp. 041601-1–041601-3. https://doi.org/10.1063/1.4816355
  • P. Sondergeld, B. Li, J. Schreuer, and M.A. Carpenter, Discontinuous evolution of single-crystal elastic constants as a function of pressure through the C2/c ↔ P21/c phase transition in spodumene (LiAlSi2O6), J. Geophys. Res. 111 (2006), pp. B07202-1–B07202-14. https://doi.org/10.1029/2005JB004098
  • A.V. Kityk, Ya.I. Shchur, A.V. Zadorozhna, I.B. Trach, I.S. Girnyk, I.Yu. Martynyuk-Lototska, and O.G. Vlokh, Pressure-induced ferroelastic instability and lattice dynamics of Cs2HgCl4 crystals within the semiempirical rigid-ion model, Phys. Rev. B 58 (1998), pp. 2505–2512. https://doi.org/10.1103/PhysRevB.58.2505
  • A.V. Kityk, O.M. Mow, V.P. Soprunyuk, and O.G. Vlokh, Optical birefringence and acoustic properties near the phase transitions and triple point in incommensurate proper ferroelastic Cs2HgBr4, Cs2CdBr4 and Cs2HgCl4 crystals, J. Phys.: Condens. Matter 5 (1993), pp. 5189–5200. https://doi.org/10.1088/0953-8984/5/29/014
  • A.V. Kityk, A.V. Zadorozhna, Ya.I. Shchur, I.Yu. Martynyuk-Lototska, Ya. Burak, and O.G. Vlokh, Elastic properties of Cs2HgBr4 and Cs2CdBr4 crystals, Aust. J. Phys. 51 (1998), pp. 943–957. https://doi.org/10.1071/P98037
  • H.P. Soon, H. Taniguchi, and M. Itoh, Dielectric and soft-mode behaviors of AgTaO3, Phys. Rev. B 81 (2010), pp. 104105-1–104105-7. https://doi.org/10.1103/PhysRevB.81.104105
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côtè, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180 (2009), pp. 2582–2615. https://doi.org/10.1016/j.cpc.2009.07.007
  • X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.M Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N. Brouwer, F. Bruneval, G. Brunin, T. Cavignac, J.B Charraud, W. Chen, M. Cotôé, S. Cottenier, J. Denier, G. Geneste, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, D. R.Hamann, G. Hautier, X. He, N. Helbig, N. Holzwarth, Y. Jia, F. Jollet, W. Lafargue-Dit-Hauret, K. Lejaeghere, Miguel A.L. Marques, A. Martin, C. Martins, H.P.C. Mirandaa, F. Naccarato, K. Persson, G. Petretto, V. Planes, Y. Pouillon, S. Prokhorenko, F. Ricci, G.M Rignanese, A.H. Romero, M.M. Schmitt, M. Torrent, M.J.V. Setten, B.V. Troeye, M.J. Verstraete, G. Zérah, and J.W. Zwanziger, The Abinit project: Impact, environment and recent developments, Comput. Phys. Commun. 248 (2020), https://doi.org/10.1016/j.cpc.2019.107042Article ID 107042.
  • N. Troullier and J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991), pp. 1993–2006. https://doi.org/10.1103/PhysRevB.43.1993
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192. https://doi.org/10.1103/PhysRevB.13.518
  • P. Giannozzi, S.D. Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43 (1991), pp. 7231–7242. https://doi.org/10.1103/PhysRevB.43.7231
  • X. Gonze, D.C. Allan, and M.P. Teter, Dielectric tensor, effective charges, and phonons in α-quartz by variational density-functional perturbation theory, Phys. Rev. Lett. 68 (1992), pp. 3603–3606. https://doi.org/10.1103/PhysRevLett.68.3603
  • X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B 55 (1997), pp. 10337–10354. https://doi.org/10.1103/PhysRevB.55.10337
  • X. Gonze and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 55 (1997), pp. 10355–10368. https://doi.org/10.1103/PhysRevB.55.10355
  • S. Baroni, S.D. Gironcoli, A.D. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001), pp. 515–562. https://doi.org/10.1103/RevModPhys.73.515
  • R.D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47 (1993), pp. 1651–1654. https://doi.org/10.1103/PhysRevB.47.1651
  • R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys 66 (1994), pp. 899–915. https://doi.org/10.1103/RevModPhys.66.899
  • D.R. Hamann, X. Wu, K.M. Rabe, and D. Vanderbilt, Metric tensor formulation of strain in density-functional perturbation theory, Phys. Rev. B 71 (2005), pp. 035117-1–035117-17. https://doi.org/10.1103/PhysRevB.71.035117
  • A. Otero-de-la-Roza, D. Abbasi-Perez, and V. Luana, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation, Comput. Phys. Commun. 182 (2011), pp. 2232–2248. https://doi.org/10.1016/j.cpc.2011.05.009
  • H. Zhai, X. Li, and J. Du, First-principles calculations on elasticity and anisotropy of tetragonal tungsten dinitride under pressure, Mater. Trans. 53 (2012), pp. 1247–1251. https://doi.org/10.2320/matertrans.M2011373
  • O. Beckstein, J.E. Klepeis, G.L.W. Hart, and O. Pankratov, First-principles elastic constants and electronic structure of α-Pt2 Si and PtSi, Phys. Rev. B 63 (2001), pp. 134112-1–134112-12. https://doi.org/10.1103/PhysRevB.63.134112
  • F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90 (2014), pp. 224104-1–224104-4. https://doi.org/10.1103/PhysRevB.90.224104
  • Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phy. Rev. B 76 (2007), pp. 054115-1–054115-15. https://doi.org/10.1103/PhysRevB.76.054115
  • J. Yang, M. Shahid, C. Wan, F. Jing, and W. Pan, Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations, J. Eur. Ceram. Soc. 37 (2017), pp. 689–695. https://doi.org/10.1016/j.jeurceramsoc.2016.08.034
  • K. Sarasamak, S. Limpijumnong, and W.R.L. Lambrecht, Pressure-dependent elastic constants and sound velocities of wurtzite SiC, GaN, InN, ZnO, and CdSe, and their relation to the high-pressure phase transition: A first-principles study, Phys. Rev. B 82 (2010), pp. 035201-1–035201-10. https://doi.org/10.1103/PhysRevB.82.035201
  • W. Voigt, Lehrburch Der Kristallphysik, Teubner Verlag, Leipzig, 1910.
  • A. Reuss and Z. Angew, Berechnung der Fließgrenze von Mischkristallen auf grund der Plastizitätsbedingung für Einkristalle, Math. Mech. 9 (1929), pp. 49–58. https://doi.org/10.1002/zamm.19290090104
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952), pp. 349–354. https://doi.org/10.1088/0370-1298/65/5/307
  • V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Electronic structure, chemical bonding and elastic properties of the first thorium-containing nitride perovskite TaThN3, Phys. Status Solidi (RRL) 1 (2007), pp. 89–91. https://doi.org/10.1002/pssr.200600116
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843. https://doi.org/10.1080/14786440808520496
  • I.R. Shein and A.L. Ivanovskii, Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26-52 K superconducting materials from first principles, Scr. Mater. 59 (2008), pp. 1099–1102. https://doi.org/10.1016/j.scriptamat.2008.07.028
  • J.J. Lewandowski, W.H. Wang, and A.L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85 (2005), pp. 77–87. https://doi.org/10.1080/09500830500080474
  • P. Schwerdtfeger and J.K. Nagle, 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table, Mol. Phys. (2019), pp. 1–26. https://doi.org/10.1080/00268976.2018.1535143
  • L. Kalarasse, B. Bennecer, F. Kalarasse, and S. Djeroud, Pressure effect on the electronic and optical properties of the alkali antimonide semiconductors Cs3Sb, KCs2Sb, CsK2Sb and K3Sb: Ab initio study, J. Phys. Chem. Solids 71 (2010), pp. 1732–1741. https://doi.org/10.1016/j.jpcs.2010.09.007
  • E. Kroumova, M.I. Aroyo, J.M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Bilbao crystallographic server: Useful databases and tools for phase-transition studies, Phase Transit.76 (2003), pp. 155–170. https://doi.org/10.1080/0141159031000076110
  • J. Shieh, J.H. Yeh, Y.C. Shu, and J.H. Yen, Hysteresis behaviors of barium titanate single crystals based on the operation of multiple 90∘ switching systems, Mater. Sci. Eng. B 161 (2009), pp. 50–54. https://doi.org/10.1016/j.mseb.2008.11.046
  • A. Benahmed, A. Bouhemadou, R. Khenata, and S. Bin-Omran, Ab initio study of the electronic, optical and thermodynamic properties of the ternary phosphides LiAeP (Ae = Sr, Ba), Indian J. Phys.91 (2017), pp. 157–167. https://doi.org/10.1007/s12648-016-0909-7
  • O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • P. Debye, Zur theorie der spezifischen Wärmen, Ann. Phys. 39 (1912), pp. 789–839. https://doi.org/10.1002/andp.19123441404
  • A.T. Petit and P.L. Dulong, Sur quelques points importants de la théorie de la chaleur, Ann. Chim. Phys. 10 (1819), pp. 395–413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.