87
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Melting of micro/nanoparticles in an alloy melt with the Soret effect

, , , , &
Pages 1423-1441 | Received 01 Oct 2022, Accepted 12 May 2023, Published online: 31 May 2023

References

  • K. Dick, T. Dhanasekaran, Z. Zhang, and D. Meisel, Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124 (10) (2002), pp. 2312.
  • C.M. Yang, M.W. Chen, G.J. Zheng, and Z.D. Wang, Melting of micro/nanoparticles considering anisotropy of surface energy. Sci. Rep. 11 (1) (2021), pp. 19297.
  • S.W. McCue, B. Wu, and J.M. Hill, Micro/nanoparticle melting with spherical symmetry and surface tension. IMA J. Appl. Math. 74 (3) (2009), pp. 439.
  • J.M. Back, S.W. McCue, and T.J. Moroney, Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles. Sci. Rep. 4 (1) (2014), pp. 1.
  • V.I. Levitas and K. Samani, Size and mechanics effects in surface-induced melting of nanoparticles. Nat. Commun. 2 (1) (2011), pp. 1.
  • J. Sun and S.L. Simon, The melting behavior of aluminum nanoparticles. Thermochim. Acta 463 (1) (2007), pp. 32.
  • K. Lu and Z.H. Jin, Melting and superheating of low-dimensional materials. Curr. Opin. Solid State Mater. Sci. 5 (1) (2001), pp. 39.
  • C.M. Yang, M.W. Chen, G.J. Zheng, M.L. Zhang, and Z.D. Wang, Micro-/nanoparticle melting in an alloy melt with anisotropic surface energy. J. Nanopart. Res. 24 (7) (2022), pp. 1.
  • K.M. Unruh, B.M. Patterson, and S.I. Shah, Melting behavior of Snx (SiO2)(100-x) granular metal films. J. Mater. Res. 7 (1) (1992), pp. 214.
  • J.G. Lee, H. Mori, and H. Yasuda, In situ observation of a fluid amorphous phase formed in isolated nanometer-sized particles in the Sn-Bi system. Physical Review B 66 (1) (2002), pp. 012105.
  • A. Shirinyan, G. Wilde, and Y. Bilogorodskyy, Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu–Ni alloys as a model system. J. Mater. Sci. 55 (26) (2020), pp. 12385.
  • G. Li, Q. Wang, D. Li, X. Lü, and J. He, Size and composition effects on the melting of bimetallic Cu–Ni clusters studied via molecular dynamics simulation. Mater. Chem. Phys. 114 (2) (2009), pp. 746.
  • C.C. Tseng and R. Viskanta, Effect of subcooling on convective melting of a particle. Int. Commun. Heat Mass Transfer 30 (1) (2003), pp. 13.
  • R. Piazza, S. Iacopini, and B. Triulzi, Thermophoresis as a probe of particle–solvent interactions: the case of protein solutions. Phys. Chem. Chem. Phys. 6 (7) (2004), pp. 1616.
  • F.M. Richter, E.B. Watson, R.A. Mendybaev, F.Z. Teng, and P.E. Janney, Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim. Cosmochim. Acta 72 (1) (2008), pp. 206.
  • F. Huang, P. Chakraborty, C.C. Lundstrom, C. Holmden, J.J.G. Glessner, S.W. Kieffer, and C.E. Lesher, Isotope fractionation in silicate melts by thermal diffusion. Nature 464 (7287) (2010), pp. 396.
  • S. Duhr and D. Braun, Thermophoretic depletion follows Boltzmann distribution. Phys. Rev. Lett. 96 (16) (2006), pp. 168301.
  • S. Duhr and D. Braun, Two-dimensional colloidal crystals formed by thermophoresis and convection. Appl. Phys. Lett. 86 (13) (2005), pp. 131921.
  • R. Piazza, Thermophoresis: moving particles with thermal gradients. Soft Matter 4 (9) (2008), pp. 1740.
  • M. Eslamian, F. Sabzi, and M.Z. Saghir, Modeling of thermodiffusion in liquid metal alloys. Phys. Chem. Chem. Phys. 12 (41) (2010), pp. 13835.
  • P.A. Artola and B. Rousseau, Microscopic interpretation of a pure chemical contribution to the Soret effect. Phys. Rev. Lett. 98 (12) (2007), pp. 125901.
  • C. Debuschewitz and W. Köhler, Molecular origin of thermal diffusion in Benzene + Cyclohexane mixtures. Phys. Rev. Lett. 87 (5) (2001), pp. 055901.
  • S. Hartmann, W. Köhler, and K.I. Morozov, The isotope Soret effect in molecular liquids: a quantum effect at room temperatures. Soft Matter 8 (5) (2012), pp. 1355.
  • K. Shukla and A. Firoozabadi, A new model of thermal diffusion coefficients in binary hydrocarbon mixtures. Ind. Eng. Chem. Res. 37(8) (1998), pp. 3331.
  • F. Huang, C.C. Lundstrom, J. Glessner, A. Ianno, A. Boudreau, J. Li, and J. DeFrates, Chemical and isotopic fractionation of wet andesite in a temperature gradient: experiments and models suggesting a new mechanism of magma differentiation. Geochim. Cosmochim. Acta 73(3) (2009), pp. 729.
  • K.I. Morozov, Soret effect in molecular mixtures. Physical Review E 79 (3) (2009), pp. 031204.
  • A.K. Gautam, A.K. Verma, K. Bhattacharyya, and A. Banerjee, Soret and Dufour effects on MHD boundary layer flow of non-Newtonian Carreau fluid with mixed convective heat and mass transfer over a moving vertical plate. Pramana 94 (2020), pp. 1.
  • K. Bhattacharyya, G.C. Layek, and G.S. Seth, Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface. Phys. Scr. 89 (9) (2014), pp. 095203.
  • A.K. Verma, S. Rajput, K. Bhattacharyya, A.J. Chamkha, and D. Yadav, Comparison between graphene-water and graphene oxide-water nanofluid flows over exponential shrinking sheet in porous medium: dual solutions and stability analysis. Chemical Engineering Journal Advances 12 (2022), pp. 100401.
  • S. Rajput, K. Bhattacharyya, A.K. Pandey, and A.J. Chamkha, Unsteady axisymmetric flow of nanofluid on nonlinearly expanding surface with variable fluid properties. JCIS Open 8 (2022), pp. 100064.
  • S. Van Vaerenbergh, J.C. Legros, and J. Dupin, First results of Soret coefficient measurement experiment. Adv. Space Res. 16 (8) (1995), pp. 69.
  • S. Van Vaerenbergh, S.R. Coriell, G.B. McFadden, B.T. Murray, and J.C. Legros, Modification of morphological stability by Soret diffusion. J. Cryst. Growth 147 (1-2) (1995), pp. 207.
  • G. Guillemot and C.-A. Gandin, Analytical model for equiaxed globular solidification in multicomponent alloys. Acta Mater. 97 (2015), pp. 419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.