98
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Crystallographic-orientation-dependent unconventional twinning pathway at the crack tip of body-centered cubic tantalum

ORCID Icon, &
Pages 1442-1452 | Received 26 Dec 2022, Accepted 12 May 2023, Published online: 01 Jun 2023

References

  • R. Miller, M. Ortiz, R. Phillips, V. Shenoy, and E.B. Tadmor, Quasicontinuum models of fracture and plasticity. Eng. Fract. Mech. 61 (1998), pp. 427–444.
  • Y.F. Guo, C.Y. Wang, and D.L. Zhao, Atomistic simulation of crack cleavage and blunting in bcc-Fe. Mater. Sci. Eng. A 349 (2003), pp. 29–35.
  • T. Tang, S. Kim, J.B. Jordon, M.F. Horstemeyer, and P.T. Wang, Atomistic simulations of fatigue crack growth and the associated fatigue crack tip stress evolution in magnesium single crystals. Comput. Mater. Sci. 50 (2011), pp. 2977–2986.
  • K. Nishimura and N. Miyazaki, Molecular dynamics simulation of crack growth under cyclic loading. Comput. Mater. Sci. 31 (2004), pp. 269–278.
  • Y.F. Guo, Y.S. Wang, and D.L. Zhao, Atomistic simulation of stress-induced phase transformation and recrystallization at the crack tip in bcc iron. Acta Mater. 55 (2007), pp. 401–407.
  • Z. Zhao and F. Chu, Atomic behaviors of crack propagation in bcc iron under dynamic loading rate with rectangular fluctuation. Mater. Sci. Eng. A 707 (2017), pp. 81–91.
  • Q.H. Tang and T.C. Wang, Deformation twinning and its effect on crack extension. Acta Mater. 46 (1998), pp. 5313–5321.
  • Y.F. Guo and D.L. Zhao, Atomistic simulation of structure evolution at a crack tip in bcc-iron. Mater. Sci. Eng. A 448 (2007), pp. 281–286.
  • P. Hora, V. Pelikán, A. Machová, A. Spielmannová, J. Prahl, M. Landa, and O. Červená, Crack induced slip processes in 3D. Eng. Fract. Mech. 75 (2008), pp. 3612–3623.
  • J. Bošanský and T. Šmida, Deformation twins — probable inherent nuclei of cleavage fracture in ferritic steels. Mater. Sci. Eng. A 323 (2002), pp. 198–205.
  • L. Liu, H.C. Wu, J. Wang, S.K. Gong, and S.X. Mao, Twinning-dominated nucleation, propagation and deflection of crack in molybdenum characterized within situ transmission electron microscopy. Philos. Mag. Lett. 94 (2014), pp. 225–232.
  • F. Gao, Z. Liu, H. Liu, and G. Wang, Toughness under different rolling processes in ultra purified Fe–17wt% Cr alloy steels. J. Alloys Compd. 567 (2013), pp. 141–147.
  • D. Wan and A. Barnoush, Plasticity in cryogenic brittle fracture of ferritic steels: dislocation versus twinning. Mater. Sci. Eng. A 744 (2019), pp. 335–339.
  • D. Farkas, Twinning and recrystallisation as crack tip deformation mechanisms during fracture. Philos. Mag. 85 (2005), pp. 387–397.
  • J. Mei, Y. Ni, and J. Li, The effect of crack orientation on fracture behavior of tantalum by multiscale simulation. Int. J. Solids Struct. 48 (2011), pp. 3054–3062.
  • A.H. Cottrell and B.A. Bilby, LX. LX. A mechanism for the growth of deformation twins in crystals. Philos. Mag. 42 (1951), pp. 573–581.
  • O.J. Guentert and B.E. Warren, X-Ray study of faults in body-centered cubic metals. J. Appl. Phys. 29 (1958), pp. 40–48.
  • K. Ito and V. Vitek, Atomistic study of non-schmid effects in the plastic yielding of bcc metals. Philos. Mag. A 81 (2001), pp. 1387–1407.
  • L. Dezerald, D. Rodney, E. Clouet, L. Ventelon, and F. Willaime, Plastic anisotropy and dislocation trajectory in BCC metals. Nat. Commun. 7 (2016), pp. 1–7.
  • J. Wang, Z. Zeng, M. Wen, Q. Wang, D. Chen, Y. Zhang, P. Wang, H. Wang, Z. Zhang, S.X. Mao, and T. Zhu, Anti-twinning in nanoscale tungsten. Sci. Adv. 6 (2020), pp. eaay2792.
  • H. Xie, G. Wei, J.P. Du, A. Ishii, G. Lu, P. Yu, and S. Ogata, Shuffling pathway of anti-twinning in body-centered-cubic metals. Scr. Mater. 222 (2023), pp. 114999.
  • G. Wei, H. Xie, F. Yin, and G. Lu, Twinning mechanism asymmetry in body-centered cubic tantalum under [001] uniaxial compression/tension. Physical Review Materials 5 (2021), pp. 123604.
  • G.C. Sih and H. Liebowitz, Mathematical Theories of Brittle Facture, Academic Press, New York, 1968.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19.
  • Y. Li, D.J. Siegel, J.B. Adams, and X.Y. Liu, Embedded-atom-method tantalum potential developed by the force-matching method. Physical Review B 67 (2003), pp. 125101.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18 (2010), pp. 0015012.
  • E. Bertrand, P. Castany, Y. Yang, E. Menou, L. Couturier, and T. Gloriant, Origin of {112}< 111 > antitwinning in a Ti-24Nb-4Zr-8Sn superelastic single crystal. J. Mater. Sci 57 (2022), pp. 7327–7342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.