149
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Unveiling the effect of interface on torsional behavior of crystalline Al-Al90Sm10 metallic glass nanolaminates

& ORCID Icon
Pages 1507-1530 | Received 28 May 2022, Accepted 09 May 2023, Published online: 11 Jun 2023

References

  • W.D. Nix, Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39 (1998), CONF-980202-.
  • Y. Champion, C. Langlois, S. Guérin-Mailly, P. Langlois, J.L. Bonnentien, and M.J. Hÿtch, Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300 (2003), pp. 310–311.
  • J.R. Weertman, The pursuit of the small: from grain-boundary cavities to nanocrystalline metals. MRS Bull. 29 (2004), pp. 616–620.
  • H. Huang and F. Spaepen, Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48 (2000), pp. 3261–3269.
  • A. Misra, X. Zhang, D. Hammon, and R.G. Hoagland, Work hardening in rolled nanolayered metallic composites. Acta Mater. 53 (2005), pp. 221–226.
  • J. Wang, Q. Zhou, S. Shao, and A. Misra, Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5 (2017), p. 1–19.
  • W. Guo, E.A. Jägle, P.P. Choi, J. Yao, A. Kostka, J.M. Schneider, and D. Raabe, Shear-induced mixing governs codeformation of crystalline-amorphous nanolaminates. Phys. Rev. Lett. 113 (2014), p. 035501.
  • D.C. Hofmann, Shape memory bulk metallic glass composites. Science 329 (2010), pp. 1294–1295.
  • P.E. Donovan and W.M. Stobbs, The structure of shear bands in metallic glasses. Acta Metall. 29 (1981), p. 1419–1436.
  • W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, and D. Raabe, Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80 (2014), pp. 94–106.
  • T.G. Nieh, T.W. Barbee, and J. Wadsworth, Tensile properties of a free-standing Cu/Zr nanolaminate (or compositionally-modulated thin film). Scr. Mater. 41 (1999), pp. 929–935.
  • Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee, Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. 104 (2007), p. 11155–11160.
  • I. Permyakova and A. Glezer, Amorphous-nanocrystalline composites prepared by high-pressure torsion. Metals (Basel) 10 (2020), p. 511.
  • L. Huang, J. Zhou, S. Zhang, Y. Wang, and Y. Liu, Effects of interface and microstructure on the mechanical behaviors of crystalline Cu-amorphous Cu/Zr nanolaminates. Mater. Des. 36 (2012), pp. 6–12.
  • S.D. Feng, W. Jiao, Q. Jing, L. Qi, S.P. Pan, G. Li, M.Z. Ma, W.H. Wang, and R.P. Liu, Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Sci. Rep. 6 (2016), pp. 1–8.
  • H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, and Y.L. Li, Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates. Mater. Des. 127 (2017), pp. 173–182.
  • B. Cheng and J.R. Trelewicz, Design of crystalline-amorphous nanolaminates using deformation mechanism maps. Acta Mater. 153 (2018), pp. 314–326.
  • K.V. Reddy, C. Deng, and S. Pal, Dynamic characterization of shock response in crystalline-metallic glass nanolaminates. Acta Mater. 164 (2019), pp. 347–361.
  • S. Mishra, K.V. Reddy, and S. Pal, Impact of crystalline–amorphous interface on shock response of metallic glass Al90Sm10/crystalline Al nanolaminates. Appl. Phys. A 127 (2021), pp. 1–13.
  • B.S.K. Gargeya, P.N. Babu, and S. Pal, Constant twist rate response of symmetric and asymmetric Σ5 aluminium tilt grain boundaries: molecular dynamics study of deformation processes. J. Mater. Sci. 56 (2021), pp. 8544–8562.
  • M. Mirnezhad, R. Ansari, S.R. Falahatgar, and P. Aghdasi, Torsional buckling analysis of MWCNTs considering quantum effects of fine scaling based on DFT and molecular mechanics method. J. Mol. Graph. Model. 104 (2021), p. 107843.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19.
  • M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho, Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy. Model. Simul. Mater. Sci. Eng. 23 (2015), p. 045013.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18 (2010), p. 015012.
  • D. Faken and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2 (1994), pp. 279–286.
  • C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58 (1998), pp. 11085–11088.
  • A. Stukowski and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18 (2010), p. 08500.
  • J.L. Finney, Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. A: Math. Phys. Eng. Sci. 319 (1970), pp. 479–493.
  • P.H. Sung, T.C. Chen, and C.D. Wu, Atomistic simulation of ZrNi metallic glasses under torsion test. Nano 12 (2017), p. 1750094.
  • M.L. Falk and C.E. Maloney, Simulating the mechanical response of amorphous solids using atomistic methods. Eur. Phys. J. B 75 (2010), pp. 405–413.
  • E.R. Homer, Examining the initial stages of shear localization in amorphous metals. Acta Mater. 63 (2014), pp. 44–53.
  • F. Delogu, Molecular dynamics study of size effects in the compression of metallic glass nanowires. Phys. Rev. B 79 (2009), p. 184109.
  • Z.D. Sha, Q.X. Pei, Z.S. Liu, Y.W. Zhang, and T.J. Wang, Necking and notch strengthening in metallic glass with symmetric sharp-and-deep notches. Sci. Rep. 5 (2015), pp. 1–7.
  • D. Rodney, J.B. Deby, and M. Verdier, Atomic-scale modelling of plasticity at a metal film/amorphous substrate interface. Model. Simul. Mater. Sci. Eng. 13 (2005), pp. 427–436.
  • V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51 (2003), pp. 4135–4147.
  • K. Zoller and K. Schulz, Analysis of single crystalline microwires under torsion using a dislocation-based continuum formulation. Acta Mater. 191 (2020), pp. 198–210.
  • N. Thompson, Dislocation nodes in face-centred cubic lattices. Proc. Phys. Soc. B 66 (1953), pp. 481–492.
  • E.G. Astafurova, M.S. Tukeeva, G.G. Maier, E.V. Melnikov, and H.J. Maier, Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking-fault energy. Mater. Sci. Eng. A 604 (2014), pp. 166–175.
  • Y.M. Hwang, C.T. Pan, Y.X. Lu, S.R. Jian, and J.Y. Juang, Deformation behaviors of Au nanotubes under torsion by molecular dynamics simulations. AIP. Adv. 8(8) (2018), p. 085204.
  • J. Hwang, Nanometer scale atomic structure of zirconium based bulk metallic glass, Ph.D. diss., University of Wisconsin—Madison, 2011.
  • Y.E. Kalay, L.S. Chumbley, M.J. Kramer, and I.E. Anderson, Local structure in marginal glass forming Al–Sm alloy. Intermetallics 18 (2010), pp. 1676–1682.
  • S. Mishra and S. Pal, Variation of glass transition temperature of Al90Sm10 metallic glass under pressurized cooling. J. Non-Cryst. Solids 500 (2018), pp. 249–259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.