45
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Quantifying the effect of non-equilibrium vacancies on Bragg–Williams ordering

ORCID Icon
Pages 1775-1786 | Received 02 Mar 2023, Accepted 22 Jun 2023, Published online: 09 Jul 2023

References

  • W.L. Bragg and E.J. Williams, The effect of thermal agitation on atomic arrangement in alloys. Proc. Roy. Soc. A. 145(855) (1934), pp. 699–730.
  • N.S. Kurnakow, S.F. Zemczuzny, and M. Zasedatelev, The transformations in alloys of gold with copper. J. Inst. Metals. 15 (1916), pp. 305–331.
  • F.C. Nix and V. Shockley, Order-disorder transformations in alloys. Rev. Mod. Phys. 10(1) (1938), pp. 1–71.
  • L.A. Girifalco, Statistical Physics of Materials, John Wiley & Sons, Inc, New York, 1973.
  • M.A. Krivoglaz and A.A. Smirnov, Theory of Order-disorder in Alloys, Elsevier, New York, 1965.
  • A.G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, Chichester, 1983).
  • H.A. Bethe, Statistical theory of superlattices. Proc. Roy. Soc. 150(871) (1935), pp. 552–575.
  • G.H. Vineyard, Theory of order-disorder kinetics. Phys. Rev. 102(4) (1956), pp. 981–992.
  • K. Gschwend, H. Sato, and R. Kikuchi, Kinetics of order–disorder transformations in alloys. II. J.Chem. Phys. 69(11) (1978), pp. 5006–5019.
  • D. de Fontaine, Cluster approach to order-disorder transformations in alloys. Solid State Phys. 47 (1994), pp. 33–176.
  • R. Yamada, M. Ohno, and T. Mohri, Configurational kinetics studied by path probability method. Progr. Mater. Sci. 120 (2021), p. 100765.
  • J.W.D. Connolly and A.R. Williams, Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B. 27(8) (1983), pp. 5169–5172.
  • N.I. Polushkin, Chemical order relaxation in a substitutional solid alloy around the critical temperature. Phys. Rev. B. 103(10) (2021), p. 104207.
  • R. Zhang, Y. Chen, Y. Fang, and Q. Yu, Characterization of chemical local ordering and heterogeneity in high-entropy alloys. MRS Bull. 47 (2022), pp. 186–193.
  • G.J. Dienes, Kinetics of order-disorder transformations. Acta Metall. 3 (1955), pp. 549–557.
  • D. Mérida, I. Unzueta, V. Sánchez-Alarcos, V. Recarte, J.I. Pérez-Landazábal, J.A. García, and F. Plazaola, Vacancies mediated ordering in Ni-Mn-Ga shape memory alloys. Scr. Mater. 215 (2022), p. 114731.
  • A. Damask and G. Dienes, Point Defects in Metals, Gordon and Breach, New York, 1971.
  • D. Paris and P. Lesbats, Vacancies in Fe-Al alloys. J. Nuclear Mater. 69-70 (1978), pp. 628–632.
  • M. Eggersmann and H. Mehrer, Diffusion in intermetallic phases of the Fe-Al system. Philos. Mag., A. 8(5) (2000), pp. 1219–1244.
  • F. Stein and M. Palm, Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. Int. J. Mat. Res. 98 (2007), pp. 580–588.
  • M. Salamon, D. Fuks, and H. Mehrer, Interdiffusion and Al self-diffusion in iron-aluminides. Defect Diffus. Forum. 237-240 (2005), pp. 444–449.
  • J. Čížek, F. Lukȧč, I. Prochȧzka, R. Kužel, Y. Jirȧskovȧ, D. Janičkovič, W. Anwand, and G. Brauer, Characterization of quenched-in vacancies in Fe–Al alloys. Physica B. 407 (2012), pp. 2659–2664.
  • T. Hehenkamp, P. Scholtz, B. Köhler, and R. Kerl, Vacancy formation and diffusion in FeAl alloys. Defect Diffus. Forum. 194-199 (2001), pp. 389–396.
  • B. Lv, P. Liu, Y. Wang, C. Gao, and M. Si, A large anomalous hall conductivity induced by Weyl nodal lines in Fe70Al30. Appl. Phys. Lett. 121 (2022), p. 0072405.
  • A. Sakai, S. Minami, T. Koretsune, T. Chen, T. Higo, Y. Wang, T. Nomoto, M. Hirayama, S. Miwa, D. Nishio-Hamane, F. Ishii, R. Arita, and S. Nakatsuji, Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature. 581 (2020), pp. 53–57.
  • C. Zener, Theory of DO for atomic diffusion in metals. J. Appl. Phys. 22(4) (1951), pp. 372–375.
  • T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM, Materials Park, 1990.
  • P.G. Shewmon, Diffusion in Solids, McGraw-Hill Book Company Inc., New-York, 1966.
  • M. Hillert, M. Schwind, and M. Selleby, Trapping of vacancies by rapid solidification. Acta Mater. 50 (2002), pp. 3283–3291.
  • C.D. van Siclen and W.G. Wolfer, Nonequilibrium vacancy entrapment by rapid solidification. Acta Metall. Mater. 40(9) (1992), pp. 2091–2100.
  • M. He, C. Wu, M.V. Shugaev, G.D. Samolyuk, and L.V. Zhigilei, Computational study of short pulse laser induced generation of crystal defects in Ni-based single-phase binary solid solution alloys. J. Phys. Chem. C. 123 (2019), pp. 2202–2215.
  • M. He, E.T. Karim, M.V. Shugaev, and L.V. Zhigilei, Atomistic simulation of the generation of vacancies in rapid crystallization of metals. Acta Mater. 203 (2021), p. 116465.
  • D. de Fontaine, k-Space symmetry rules for order-disorder reactions. Acta Metall. 23 (1975), pp. 553–571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.