325
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The role of microstructure modifications on electrochemical and plasma-nitriding behaviour of 316L steel produced by laser powder bed fusion

, , , , & ORCID Icon
Pages 1855-1896 | Received 07 May 2023, Accepted 03 Jun 2023, Published online: 07 Aug 2023

References

  • J.J. Marattukalam, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjörvarsson, and M. Sahlberg, The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater. Des. 193 (2020), pp. 108852.
  • Y. Hong, C. Zhou, Y. Zheng, L. Zhang, J. Zheng, X. Chen, and B. An, Formation of strain-induced martensite in selective laser melting austenitic stainless steel. Mater. Sci. Eng. A 740 (2019), pp. 420–426.
  • H. Jia, H. Sun, H. Wang, Y. Wu, and H. Wang, Scanning strategy in selective laser melting (SLM): a review. Int. J. Adv. Manuf. Technol. 113 (2021), pp. 2413–2435.
  • W.H. Kan, L.N.S. Chiu, C.V.S. Lim, Y. Zhu, Y. Tian, D. Jiang, and A. Huang, A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J. Mater. Sci. 57 (2022), pp. 9818–9865.
  • I. La Fé-Perdomo, J.A. Ramos-Grez, I. Jeria, C. Guerra, and G.O. Barrionuevo, Comparative analysis and experimental validation of statistical and machine learning-based regressors for modeling the surface roughness and mechanical properties of 316L stainless steel specimens produced by selective laser melting. J. Manuf. Process. 80 (2022), pp. 666–682.
  • V. Kumar, M.D. Joshi, C. Pruncu, I. Singh, and S.S. Hosmani, Microstructure and tribological response of selective laser melted AISI 316L stainless steel: the role of severe surface deformation. J. Mater. Eng. Perform. 30 (2021), pp. 5170–5183.
  • K. Lu and J. Lu, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375 (2004), pp. 38–45.
  • T.O. Olugbade and J. Lu, Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Mater. Sci. 2 (2020), pp. 3–31.
  • G. Karthik, E.S. Kim, P. Sathiyamoorthi, A. Zargaran, S.G. Jeong, R. Xiong, S.H. Kang, J.-W. Cho, and H.S. Kim, Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel. Addit. Manuf. 47 (2021), pp. 102314.
  • G. Halada and C. Clayton, Comparison of Mo–N and W–N synergism during passivation of stainless steel through x-ray photoelectron spectroscopy and electrochemical analysis. J. Vacuum Sci Technol Vacuum Surf Films 11 (1993), pp. 2342–2347.
  • Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, and D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr. Mater. 141 (2017), pp. 94–98.
  • T.Q. Ansari, J.-L. Luo, and S.-Q. Shi, Modeling the effect of insoluble corrosion products on pitting corrosion kinetics of metals. NPJ Mater. Degrad. 3 (2019), pp. 28.
  • R. Gupta and N. Birbilis, The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review. Corros. Sci. 92 (2015), pp. 1–15.
  • C. Ma, L. Zhou, R. Zhang, D. Li, F. Shu, X. Song, and Y. Zhao, Enhancement in mechanical properties and corrosion resistance of 2507 duplex stainless steel via friction stir processing. J. Mater. Res. Technol. 9 (2020), pp. 8296–8305.
  • A. Lü, Y. Zhang, Y. Li, G. Liu, Q. Zang, and C. Liu, Effect of nanocrystalline and twin boundaries on corrosion behavior of 316L stainless steel using SMAT. Acta Metall. Sin. 19 (2006), pp. 183–189.
  • X. Han, P. Wei, Y. Zhao, Z. Wang, C. Li, X. Wu, and H. Zhang, Enhanced pitting corrosion resistance of nanostructured AISI 304 stainless steel via pipe inner surface grinding treatment. Nanomaterials 13 (2023), pp. 318.
  • D. Singh, D.A. Basha, A. Singh, R.S. Devan, and S.S. Hosmani, Microstructural and passivation response of severely deformed AISI 304 steel surface: the role of surface mechanical attrition treatment. J. Mater. Eng. Perform. 29 (2020), pp. 6898–6911.
  • A. Martinavičius, G. Abrasonis, A. Scheinost, R. Danoix, F. Danoix, J. Stinville, G. Talut, C. Templier, O. Liedke, and S. Gemming, Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel. Acta Mater. 60 (2012), pp. 4065–4076.
  • V. Singh, K. Marchev, C. Cooper, and E. Meletis, Intensified plasma-assisted nitriding of AISI 316L stainless steel. Surf. Coat. Technol. 160 (2002), pp. 249–258.
  • M. Godec, Č Donik, A. Kocijan, B. Podgornik, and D.S. Balantič, Effect of post-treated low-temperature plasma nitriding on the wear and corrosion resistance of 316L stainless steel manufactured by laser powder-bed fusion. Addit. Manuf. 32 (2020), pp. 101000.
  • X. Tao, X. Liu, A. Matthews, and A. Leyland, The influence of stacking fault energy on plasticity mechanisms in triode-plasma nitrided austenitic stainless steels: Implications for the structure and stability of nitrogen-expanded austenite. Acta Mater. 164 (2019), pp. 60–75.
  • H. Che, S. Tong, K. Wang, M. Lei, and M.A. Somers, Co-existence of γ'N phase and γN phase on nitrided austenitic Fe–Cr–Ni alloys-I experiment. Acta Mater. 177 (2019), pp. 35–45.
  • L.-H. Lin, S.-C. Chen, C.-Z. Wu, J.-M. Hung, and K.-L. Ou, Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels. Appl. Surf. Sci. 257 (2011), pp. 7375–7380.
  • Y. Li, Z. Wang, and L. Wang, Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Appl. Surf. Sci. 298 (2014), pp. 243–250.
  • E. De Las Heras, G. Ybarra, D. Lamas, A. Cabo, E.L. Dalibon, and S.P. Brühl, Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres-Influence on microstructure and corrosion resistance. Surf. Coat. Technol. 313 (2017), pp. 47–54.
  • F. Cemin, F.G. Echeverrigaray, A.C. Rovani, C.L. Amorim, R.L. Basso, I.J. Baumvol, and C.A. Figueroa, Influence of atomic and mechanical attrition on low temperature plasma nitriding of ferrous alloys. Mater. Sci. Eng. A 527 (2010), pp. 3206–3209.
  • M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, and G. Proust, The effect of surface mechanical attrition treatment on low temperature plasma nitriding of an austenitic stainless steel. Surf. Coat. Technol. 221 (2013), pp. 191–195.
  • Z. Li, C. Illing, A.H. Heuer, and F. Ernst, Low-temperature carburization of AL-6XN enabled by provisional passivation. Metals 8 (2018), pp. 997.
  • A.M. Gatey, S.S. Hosmani, C.A. Figueroa, S.B. Arya, and R.P. Singh, Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel. Surf. Coat. Technol. 304 (2016), pp. 413–424.
  • V. Kumar, A. Sharma, S.S. Hosmani, and I. Singh, Effect of ball size and impact velocity on the microstructure and hardness of surface mechanical attrition–treated 304L steel: experiment and finite element simulations. Int. J. Adv. Manuf. Technol. 120 (2022), pp. 3251–3267.
  • V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6 (2012), pp. 1–8.
  • S. Ghosh, N. Bibhanshu, S. Suwas, and K. Chatterjee, Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility. Mater. Sci. Eng. A 820 (2021), pp. 141540.
  • S.M. Yusuf, Y. Chen, S. Yang, and N. Gao, Microstructural evolution and strengthening of selective laser melted 316L stainless steel processed by high-pressure torsion. Mater. Charact. 159 (2020), pp. 110012.
  • Y. He, J. Gao, Y. He, and K. Shin, A new fcc-bcc orientation relationship observed in the strain-induced martensitic transformation of an austenitic stainless steel. Mater. Lett. 305 (2021), pp. 130735.
  • X.-S. Yang, S. Sun, and T.-Y. Zhang, The mechanism of bcc α′ nucleation in single hcp ϵ laths in the fcc γ → hcp ϵ → bcc α′ martensitic phase transformation. Acta Mater. 95 (2015), pp. 264–273.
  • Y. He, K. Wang, and K. Shin, Correlation of orientation relationships and strain-induced martensitic transformation sequences in a gradient austenitic stainless steel. J. Mater. Sci. 56 (2021), pp. 4858–4870.
  • D. Geissler, J. Freudenberger, A. Kauffmann, S. Martin, and D. Rafaja, Assessment of the thermodynamic dimension of the stacking fault energy. Philos. Mag. 94 (2014), pp. 2967–2979.
  • Y. Sun, A. Moroz, and K. Alrbaey, Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel. J. Mater. Eng. Perform. 23 (2014), pp. 518–526.
  • A. Hermas, XPS analysis of the passive film formed on austenitic stainless steel coated with conductive polymer. Corros. Sci. 50 (2008), pp. 2498–2505.
  • Y. Zhao, H. Xiong, X. Li, W. Qi, J. Wang, Y. Hua, T. Zhang, and F. Wang, Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment. Corros. Commun. 2 (2021), pp. 55–62.
  • C.-C. Shih, C.-M. Shih, Y.-Y. Su, L.H.J. Su, M.-S. Chang, and S.-J. Lin, Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications. Corros. Sci. 46 (2004), pp. 427–441.
  • Z. Feng, X. Cheng, C. Dong, L. Xu, and X. Li, Passivity of 316L stainless steel in borate buffer solution studied by Mott–Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy. Corros. Sci. 52 (2010), pp. 3646–3653.
  • A. Fattah-Alhosseini, Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model. Arab. J. Chem. 9 (2016), pp. S1342–S1348.
  • T. Czerwiec, H. He, S. Weber, C. Dong, and H. Michel, On the occurrence of dual diffusion layers during plasma-assisted nitriding of austenitic stainless steel. Surf. Coat. Technol. 200 (2006), pp. 5289–5295.
  • C. Li and T. Bell, Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel. Corros. Sci. 46 (2004), pp. 1527–1547.
  • A. Yetim, F. Yildiz, A. Alsaran, and A. Celik, Surface modification of 316L stainless steel with plasma nitriding. Kov. Mater. 46 (2008), pp. 105.
  • E. Menthe and K.-T. Rie, Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding. Surf. Coat. Technol. 116 (1999), pp. 199–204.
  • F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature. Surf. Coat. Technol. 200 (2005), pp. 2474–2480.
  • D. Singh, F. Cemin, M.J. Jimenez, V. Antunes, F. Alvarez, D. Orlov, C.A. Figueroa, and S.S. Hosmani, High-temperature oxidation behaviour of nanostructure surface layered austenitic stainless steel. Appl. Surf. Sci. 581 (2022), pp. 152437.
  • X. Zou, Z. Yan, K. Zou, W. Liu, L. Song, S. Li, and L. Cha, Grain refinement by dynamic recrystallization during laser direct energy deposition of 316L stainless steel under thermal cycles. J. Manuf. Process. 76 (2022), pp. 646–655.
  • L. Li, F. Liu, S. Nie, Q. Wang, R. Zhao, Y. Zhang, H. Feng, and X. Lin, Effect of thermal cycling on grain evolution and micro-segregation in selective laser melting of FGH96 superalloy. Metals 13 (2023), pp. 121.
  • M.D. Joshi, V. Kumar, I. Singh, and S.S. Hosmani, Tribological response of mechanical attrition treated surface of AISI 316L steel: the role of velocity of colliding balls. J. Tribol. 143 (2021), pp. 031701-1–031701-15.
  • M. El-Tahawy, Y. Huang, T. Um, H. Choe, J.L. Lábár, T.G. Langdon, and J. Gubicza, Stored energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion. J. Mater. Res. Technol. 6 (2017), pp. 339–347.
  • C. Ye, S. Suslov, D. Lin, and G.J. Cheng, Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philos. Mag. 92 (2012), pp. 1369–1389.
  • J. Lai, C.H. Shek, and K.H. Lo, Recent developments in stainless steels. Materials Science and Engineering: R: Reports 65 (2012), pp. 39–104.
  • S. Varma, J. Kalyanam, L. Murk, and V. Srinivas, Effect of grain size on deformation-induced martensite formation in 304 and 316 stainless steels during room temperature tensile testing. J. Mater. Sci. Lett. 13 (1994), pp. 107–111.
  • X. Ni, D. Kong, W. Wu, L. Zhang, and C. Dong, Deformation-induced martensitic transformation in 316L stainless steels fabricated by laser powder bed fusion. Mater. Lett. 302 (2021), pp. 130377.
  • A. Yilmaz, X. Li, S. Pletincx, T. Hauffman, J. Sietsma, and Y. Gonzalez-Garcia, Passive film properties of martensitic steels in alkaline environment: influence of the prior austenite grain size. Metals 12 (2022), pp. 292.
  • X. Chunchun and H. Gang, Effect of deformation-induced martensite on the pit propagation behavior of 304 stainless steel. Anti Corros. Methods Mater. 51 (2004), pp. 381–388.
  • G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C. Hutchinson, On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting. J. Electrochem. Soc. 164 (2017), pp. C250.
  • G. Burstein and P. Pistorius, Surface roughness and the metastable pitting of stainless steel in chloride solutions. Corrosion 51 (1995), pp. 380–385.
  • D. Singh, A.M. Gatey, R.S. Devan, V. Antunes, F. Alvarez, C.A. Figueroa, A.A. Joshi, and S.S. Hosmani, Surface treatment response of AISI 2205 and AISI 304L steels: SMAT and plasma-nitriding. Surf. Eng. 35 (2019), pp. 205–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.