667
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Occurrence of {332}⟨113̅⟩ deformation twinning in a single crystal of an Fe–3mass%Al alloy

, & ORCID Icon
Pages 1897-1910 | Received 15 May 2023, Accepted 30 Jul 2023, Published online: 10 Aug 2023

References

  • S. Mahajan and D.F. Williams, Deformation twinning in metals and alloys. Int. Mater. Rev. 18 (1973), pp. 43–61.
  • H.W. Paxton, Experimental verification of the twin system in alpha-iron. Acta. Metall. 1 (1953), pp. 141–143.
  • A.G. Crocker, Twinned martensite. Acta. Metall. 10 (1962), pp. 113–122.
  • M.J. Blackburn and J.A. Feeney, Stress-induced transformations in Ti–Mo alloys. J. Inst. Metals 99 (1971), pp. 132–134.
  • S. Hanada, T. Yoshio, and O. Izumi, Plastic deformation mode of retained β phase in β-eutectoid Ti–Fe alloys. J. Mat. Sci. 21 (1986), pp. 866–870.
  • S. Hanada, T. Yoshio, and O. Izumi, Effect of plastic deformation mode on tensile properties of beta titanium alloys. Trans. Japan Inst. Met. 27 (1986), pp. 496–503.
  • L.M. Dougherty, G.T. Gray III, E.K. Cerreta, R.J. McCabe, R.D. Field, and J.F. Bingert, Rare twin linked to high-pressure phase transition in iron. Scr. Mater. 60 (2009), pp. 772–775.
  • S.J. Wang, M.L. Sui, Y.T. Chen, Q.H. Lu, E. Ma, X.Y. Pei, Q.Z. Li, and H.B. Hu, Microstructural fingerprints of phase transitions in shock-loaded iron alloy. Sci. Rep. 3 (2013), pp. 1086.
  • H. Tobe, H.Y. Kim, T. Imamura, H. Hosoda, and S. Miyazaki, Origin of {332} twinning in metastable β-Ti alloys. Acta Mater. 64 (2014), pp. 345–355.
  • E. Bertrand, P. Castany, Y. Yang, E. Menou, and T. Gloriant, Deformation twinning in the full-α” martensitic Ti–25Ta–20Nb shape memory alloy. Acta Mater. 105 (2016), pp. 94–103.
  • M.J. Lai, C.C. Tasan, and D. Raabe, On the mechanism of {332} twinning in metastable β titanium alloys. Acta Mater. 111 (2016), pp. 173–186.
  • J. Herrmann, G. Inden, and G. Sauthoff, Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures. Acta Mater. 51 (2003), pp. 2847–2857.
  • J. Herrmann, G. Inden, and G. Sauthoff, Deformation behaviour of iron-rich iron-aluminium alloys at high temperatures. Acta Mater. 51 (2003), pp. 3233–3242.
  • R. Rana, C. Liu, and R.K. Ray, Low-density low-carbon Fe–Al ferritic steels. Scr. Mater. 68 (2013), pp. 354–359.
  • X. Bian, F. Yuan, Y. Zhu, and X. Wu, Gradient structure produces superior dynamic shear properties. Mater. Res. Lett. 5 (2017), pp. 501–507.
  • Y. Fujimoto, E. Shintaku, Y. Tanaka, and J. Fujiyoshi, Pad type compressive force sensor suitable for high-speed impact force measurement. Trans. Jap. Soc. Mech. Eng. C 78 (2012), pp. 2438–2449.
  • B. Wang, X. Wang, Z. Li, R. Ma, S. Zhao, F. Xie, and X. Zhang, Shear localization and microstructure in coarse grained beta titanium alloy. Mater. Sci. Eng. A 652 (2016), pp. 287–295.
  • J.A. Hines and K.S. Vecchino, Recrystallization kinetics within adiabatic shear bands. Acta Mater. 45 (1997), pp. 635–649.
  • Q. Xue, E.K. Cerreta, and G.T. Gray III, Microstructural characteristics of post-shear localization in cold-rolled 316L stainless steel. Acta Mater. 55 (2007), pp. 691–704.
  • N.E. Paton and W.A. Bakofen, Plastic deformation of titanium at elevated temperatures. Metall. Trans. 1 (1970), pp. 2839–2847.
  • G. Tsukamoto, T. Kunieda, S. Yamasaki, M. Mitsuhara, and H. Nakashima, Effects of temperature and grain size on active twinning systems in commercially pure titanium. J. Alloys Compd. 884 (2021), pp. 161154.