126
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interstitial-oxygen induced and magnetically driven HCP-to-FCC transformation in CoCrFeNiOx high-entropy alloy: a first-principles study

&
Pages 2123-2140 | Received 03 May 2022, Accepted 26 Sep 2023, Published online: 09 Oct 2023

References

  • B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7 (2016), pp. 10602.
  • Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81 (2014), pp. 428–441.
  • A. Gali and E.P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics 39 (2013), pp. 74–78.
  • D. Luo, Q. Zhou, W. Ye, Y. Ren, C. Greiner, Y. He, and H. Wang, Design and characterization of self-lubricating refractory high entropy alloy-based multilayered films. ACS Appl. Mater. Interfaces 13(2021), pp. 55712–55725.
  • M. Klimova, N. Stepanov, D. Shaysultanov, R. Chernichenko, N. Yurchenko, V. Sanin, and S. Zherebtsov, Microstructure and mechanical properties evolution of the Al, C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling. Materials. (Basel) 11 (2018), pp. 53.
  • W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51 (2013), pp. 854–860.
  • F.J. Wang and Y. Zhang, Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496 (2008), pp. 214–216.
  • A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metallurgical and Materials Transactions A 40 (2009), pp. 3076–3090.
  • S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics 93 (2018), pp. 269–273.
  • Z. Wu, C.M. Parish, and H. Bei, Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J. Alloys Compd. 647 (2015), pp. 815–822.
  • Z. Wang, I. Baker, Z. Cai, S. Chen, J.D. Poplawsky, and W. Guo, The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. 4Ni11. 3Mn34. 8Al7. 5Cr6 high entropy alloys. Acta Mater. 120 (2016), pp. 228–239.
  • J. Chen, Z. Yao, X. Wang, Y. Lu, X. Wang, Y. Liu, and X. Fan, Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210 (2018), pp. 136–145.
  • H. Luo, Z. Li, and D. Raabe, Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7 (2017), pp. 9892.
  • Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, and P. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93 (2018), pp. 228–234.
  • I. Moravcik, J. Cizek, L.d.A. Gouvea, J. Cupera, I. Guban, and I. Dlouhy, Nitrogen interstitial alloying of CoCrFeMnNi high entropy alloy through reactive powder milling. Entropy 21 (2019), pp. 363.
  • Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.-G. Nieh, and Z. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563 (2018), pp. 546–550.
  • Z. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe, Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7 (2017), pp. 40704.
  • Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534 (2016), pp. 227–230.
  • C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, and M. Ghazisaeidi, Magnetically-driven phase transformation strengthening in high entropy alloys. Nat. Commun. 9 (2018), pp. 1363.
  • Y. Ikeda, I. Tanaka, and J. Neugebauer, Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy. Physical Review Materials 3 (2019), pp. 113603.
  • M.S. Lucas, L. Mauger, J.A. Muñoz, Y.M. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, Effects of chemical composition and B2 order on phonons in bcc Fe–Co alloys. J. Appl. Phys. 108 (2010), pp. 023519.
  • Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci. Rep. 3 (2013), pp. 1455.
  • T.T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang, Influence of bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67 (2015), pp. 171–176.
  • T.T. Zuo, R.B. Li, X.J. Ren, and Y. Zhang, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J. Magn. Magn. Mater. 371 (2014), pp. 60–68.
  • T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, and Y. Zhang, Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130 (2017), pp. 10–18.
  • Y. Hong, M. Beyramali, and M. Kivy, Competition between formation of Al2O3 and Cr2O3 in oxidation of Al0.3CoCrCuFeNi high entropy alloy: A first-principles study. Scr. Mater. 168 (2019), pp. 139–143.
  • A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65 (2013), pp. 1780.
  • H.S. Grewal, R.M. Sanjiv, H.S. Arora, R. Kumar, A. Ayyagari, S. Mukherjee, and H. Singh, Activation energy and high temperature oxidation behavior of multi-principal element alloy. Adv. Eng. Mater. 19 (2017), pp. 1700182.
  • A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, and Z.K. Liu, Efficient stochastic generation of special quasirandom structures. Calphad 42 (2013), pp. 13–18.
  • A. van de Walle, Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the alloy theoretic automated toolkit. Calphad 33 (2009), pp. 266–278.
  • G. Zheng, Molecular dynamics and first-principles studies on the deformation mechanisms of nanostructured cobalt. J. Alloys Compd. 504 (2010), pp. S467–S471.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18 (2010), pp. 0015012.
  • D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100 (2015), pp. 90–97.
  • Y.H. Zhang, Y. Zhuang, A. Hu, J.J. Kai, and C.T. Liu, The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scr. Mater. 130 (2017), pp. 96–99.
  • J. Hafner, Ab-initiosimulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29 (2008), pp. 2044–2078.
  • J. Hafner, Materials simulations using VASP—a quantum perspective to materials science. Comput. Phys. Commun. 177 (2007), pp. 6–13.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • P. Wisesa, K.A. McGill, and T. Mueller, Efficient generation of generalized monkhorst-pack grids through the use of informatics. Physical Review B 93 (2016), pp. 155109.
  • F.X. Zhang, S.J. Zhao, K. Jin, H. Bei, D. Popov, C. Park, J.C. Neuefeind, W.J. Webe, and Y.W. Zhang, Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Appl. Phys. Lett. 110 (2017), pp. 011902.
  • Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds CRC Press LLC, Boca Raton., University of South Florida, St. Petersburg, 2003.
  • Z. Li, Y. Gu, M. Pan, C. Wang, Z. Wu, X. Hou, X. Tan, and H. Xu, Tailoring AC magnetic properties of FeCoNi(MnSi) (0 ≤ x ≤ 0.4) high-entropy alloys by the addition of Mn and Si elements. J. Alloys Compd. 792 (2019), pp. 215–221.
  • J. Kamarád, M. Friák, J. Kaštil, O. Schneeweiss, and M. Šob, Effect of high pressure on magnetic properties of CrMnFeCoNi high entropy alloy. J. Magn. Magn. Mater. 487 (2019), pp. 165333.
  • R. Kulkarni, B.S. Murty, and V. Srinivas, Study of microstructure and magnetic properties of AlNiCo(CuFe) high entropy alloy. J. Alloys Compd. 746 (2018), pp. 194–199.
  • O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E.P. George, J. Neugebauer, and A. Dlouhý, Magnetic properties of the CrMnFeCoNi high-entropy alloy. Physical Review B 96 (2017), pp. 014437.
  • N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique, Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556 (2013), pp. 79–85.
  • S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, and J. Banhart, Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111 (2011), pp. 619–622.
  • M.A. Richard, A.M. Rowe, and R. Chahine, Magnetic refrigeration: single and multimaterial active magnetic regenerator experiments. J. Appl. Phys. 95 (2004), pp. 2146–2150.
  • J. Lyubina, R. Schäfer, N. Martin, L. Schultz, and O. Gutfleisch, Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22 (2010), pp. 3735–3739.
  • R. Bjørk, C.R.H. Bahl, A. Smith, and N. Pryds, Review and comparison of magnet designs for magnetic refrigeration. Int. J. Refrig 33 (2010), pp. 437–448.
  • E. Brück, O. Tegus, D.T. Cam Thanh, N.T. Trung, and K.H.J. Buschow, A review on Mn based materials for magnetic refrigeration: structure and properties. Int. J. Refrig 31 (2008), pp. 763–770.
  • V.K. Pecharsky and K. A, Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200 (1999), pp. 44–56.
  • V.K. Pecharsky and K.A. Gschneidner, Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K. Appl. Phys. Lett. 70 (1997), pp. 3299–3301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.