62
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Prediction of new KVBi monolayer stability and electronic, magneto-optic and thermoelectric properties

, , , , &
Pages 260-272 | Received 05 May 2023, Accepted 06 Dec 2023, Published online: 07 Jan 2024

References

  • C.M. Fang, G.A. De Wijs, and R.A. De Groot, Spin-polarization in half-metals. J. Appl. Phys. 91(10) (2002), pp. 8340–8344. doi:10.1063/1.1452238
  • M.I. Katsnelson, V. Yu Irkhin, L. Chioncel, A.I. Lichtenstein, and R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80(2) (2008), pp. 315. doi:10.1103/RevModPhys.80.315
  • J.J. Attema, G.A. De Wijs, and R.A. De Groot, The continuing drama of the half-metal/semiconductor interface. J. Phys. D: Appl. Phys. 39(5) (2006), pp. 793. doi:10.1088/0022-3727/39/5/S04
  • F.A. Najar and K. Sultan, From halfmetallicity to dielectric tensor: Atomistic study of phase stability and optical spectrum of Sr2FeMoO6 double perovskite and its potential applications. J. Phys. Chem. Solids 171 (2022), pp. 111039. doi:10.1016/j.jpcs.2022.111039
  • C. Felser, G.H. Fecher, and B. Balke, Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 46(5) (2007), pp. 668–699. doi:10.1002/anie.200601815
  • Z. Diao, M. Chapline, Y. Zheng, C. Kaiser, A.G. Roy, C.J. Chien, C. Shang, Y. Ding, C. Yang, D. Mauri, and Q. Leng, Half-metal CPP GMR sensor for magnetic recording. J. Magn. Magn. Mater. 356 (2014), pp. 73–81. doi:10.1016/j.jmmm.2013.12.050
  • M. Ashton, D. Gluhovic, S.B. Sinnott, J. Guo, D.A. Stewart, and R.G. Hennig, Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 17(9) (2017), pp. 5251–5257. doi:10.1021/acs.nanolett.7b01367
  • M. Sherzad Othman, M. Sadeghi, N. Vahabzadeh, A. Boochani, and M. Amiri, Hydrogen effect on half-metallic and thermoelectric properties of CoRhMnSi [001] film. Int. J. Energy Res. 45(9) (2021), pp. 13055–13070. doi:10.1002/er.6633
  • W. Kim, K. Kawaguchi, N. Koshizaki, M. Sohma, and T. Matsumoto, Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4. J. Appl. Phys. 93(10) (2003), pp. 8032–8034. doi:10.1063/1.1557337
  • S. Berri, Computational study of structural, electronic, elastic, half-metallic and thermoelectric properties of CoCrScZ (Z = Al, Si, Ge, and Ga) quaternary Heusler alloys. J. Supercond. Novel Magn. 33(12) (2020), pp. 3809–3818. doi:10.1007/s10948-020-05638-4
  • M. Mushtaq, S. Al-Qaisi, and I.U.N. Lone, Computational study of phase stability, electronic, magnetic and thermoelectric properties of a new quaternary Heusler alloy CrCoIrGa. Solid State Commun. 342 (2022), pp. 114636. doi:10.1016/j.ssc.2021.114636
  • H. Luo, Z. Zhu, L. Ma, S. Xu, H. Liu, J. Qu, Y. Li, and G. Wu, Electronic structure and magnetic properties of Fe2YSi (Y = Cr, Mn, Fe, Co, Ni) Heusler alloys: a theoretical and experimental study. J. Phys. D: Appl. Phys. 40(22) (2007), pp. 7121. doi:10.1088/0022-3727/40/22/039
  • A. Ahmad, S.K. Srivastava, and A.K. Das, First-principles calculations and experimental studies on Co2FeGe Heusler alloy nanoparticles for spintronics applications. J. Alloys Compd. 878 (2021), pp. 160341. doi:10.1016/j.jallcom.2021.160341
  • R.A. De Groot, F.M. Mueller, P.G.V. van Engen, and K.H.J. Buschow, New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50(25) (1983), pp. 2024. doi:10.1103/PhysRevLett.50.2024
  • P. Hermet, K. Niedziolka, and P. Jund, A first-principles investigation of the thermodynamic and mechanical properties of Ni–Ti–Sn Heusler and half-Heusler materials. RSC Adv. 3(44) (2013), pp. 22176–22184. doi:10.1039/c3ra43990a
  • D.-y. Jung, K. Kurosaki, C.-e. Kim, H. Muta, and S. Yamanaka, Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M = Ti, Zr, Hf). J. Alloys Compd. 489(2) (2010), pp. 328–331. doi:10.1016/j.jallcom.2009.09.139
  • I. Galanakis and P. Mavropoulos, Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles. J. Phys.: Condens. Matter 19(31) (2007), pp. 315213. doi:10.1088/0953-8984/19/31/315213
  • R. Djelti, A. Besbes, and B. Bestani, TB-mBJ calculations of optical and thermoelectric properties of half-Heusler FeCrAs alloy. Opt. Quantum Electron. 52 (2020), pp. 1–10. doi:10.1007/s11082-020-02527-x
  • A. Touia, K. Benyahia, and A. Tekin, First-principles calculations of structural, electronic, optical, and thermoelectric properties of LuNiBi and LuNiSb half-heusler. J. Supercond. Novel Magn. 34(10) (2021), pp. 2689–2698. doi:10.1007/s10948-021-05970-3
  • B. Anissa, D. Radouan, and B. Benaouda, Optical and thermoelectric response of RhTiSb half-Heusler. Int. J. Mod. Phys. B 33(22) (2019), pp. 1950247. doi:10.1142/S0217979219502473
  • D.R. Jaishi, N. Sharma, B. Karki, B.P. Belbase, R.P. Adhikari, and M.P. Ghimire, Electronic structure and thermoelectric properties of half-Heusler alloys NiTZ. AIP. Adv. 11(2) (2021). doi:10.1063/5.0031512
  • A. Dehghan and S. Davatolhagh, d0-d half-Heusler alloys: A potential class of advanced spintronic materials. J. Alloys Compd. 772 (2019), pp. 132–139. doi:10.1016/j.jallcom.2018.09.052
  • A. Dehghan and S. Davatolhagh, First principles study of d0-d half-Heusler alloys containing group-IV,-V, and-VI sp atoms as prospective half-metals for real spintronic applications. Mater. Chem. Phys. 273 (2021), pp. 125064. doi:10.1016/j.matchemphys.2021.125064
  • I. Galanakis, M. Ležaić, G. Bihlmayer, and S. Blügel, Interface properties of NiMn Sb ∕ In P and NiMnSb∕ Ga As contacts. Physical Review B 71(21) (2005), pp. 214431. doi:10.1103/PhysRevB.71.214431
  • S. Li, H. Zhao, D. Li, S. Jin, and L. Gu, Synthesis and thermoelectric properties of half-Heusler alloy YNiBi. J. Appl. Phys. 117(20) (2015), pp. 72–79.
  • H. Zhang, Y. Wang, L. Huang, S. Chen, H. Dahal, D. Wang, and Z. Ren, Synthesis and thermoelectric properties of n-type half-Heusler compound VCoSb with valence electron count of 19. J. Alloys Compd. 654 (2016), pp. 321–326. doi:10.1016/j.jallcom.2015.09.082
  • D. Zhao, L. Wang, L. Bo, and D. Wu, Synthesis and thermoelectric properties of Ni-doped ZrCoSb half-Heusler compounds. Metals 8(1) (2018), pp. 61. doi:10.3390/met8010061
  • A. Boochani, M. Jamal, M. Shahrokhi, B. Nowrozi, M.B. Gholivand, J. Khodadadi, E. Sartipi, M. Amiri, M. Asshabi, and A. Yari, Ti 2 VGe Heuslerene: theoretical prediction of a novel 2D material. J. Mater. Chem. C 7(43) (2019), pp. 13559–13572. doi:10.1039/C9TC03176F
  • L.C. Nhan, V.T. Vi, D.X. Du, N.Q. Cuong, N.N. Hieu, and T.P. Linh, Density functional theory investigations of PbSnX2 (X = S, Se, Te) monolayers: Structural and electronic properties. Chem. Phys. 566 (2023), pp. 111797. doi:10.1016/j.chemphys.2022.111797
  • E. Sjöstedt, L. Nordström, and D.J. Singh, An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114(1) (2000), pp. 15–20. doi:10.1016/S0038-1098(99)00577-3
  • K. Schwarz and P. Blaha, Solid state calculations using WIEN2k. Comput. Mater. Sci. 28(2) (2003), pp. 259–273. doi:10.1016/S0927-0256(03)00112-5
  • A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J. Phys.: Condens. Matter 26(36) (2014), pp. 363202. doi:10.1088/0953-8984/26/36/363202
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18) (1996), pp. 3865. doi:10.1103/PhysRevLett.77.3865
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, and D. Ceresoli, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39) (2009), pp. 395502. doi:10.1088/0953-8984/21/39/395502
  • J. Wang, H. Yuan, Y. Liu, X. Wang, and G. Zhang, Multiple dimensions of spin-gapless semiconducting states in tetragonal Sr2CuF6. Phys. Rev. B 106(6) (2022), pp. L060407.
  • L.-M. Zhou, X. Zhu, Y. Zheng, L. Wang, C. Huang, X. Jiang, Y. Shi, F.-W. Sun, and J. Hu, Superfast and sub-wavelength orbital rotation of plasmonic particles in focused Gaussian beams. Appl. Phys. Lett. 123(3) (2023).
  • J. Gong, J. Wang, H. Yuan, Z. Zhang, W. Wang, and X. Wang, Dirac phonons in two-dimensional materials. Phys. Rev. B 106(21) (2022), pp. 214317. doi:10.1103/PhysRevB.106.214317
  • Y. Yang, F. Zhou, J. Wang, Y. Liu, Y. Cui, G. Ding, and X. Wang, Unpaired Weyl phonon systems in NaHPO3NH2. Appl. Phys. Lett. 122(23) (2023).
  • G. Ding, C. Xie, J. Bai, Z. Cheng, X. Wang, and W. Wu. Recipe for single-pair-Weyl-points phonons carrying the same chiral charges, arXiv preprint arXiv:2304.04608 (2023).
  • Y. Yang, J. Wang, Y. Liu, Y. Cui, G. Ding, and X. Wang, Topological phonons in Cs-Te binary systems. Phys. Rev. B 107(2) (2023), pp. 024304. doi:10.1103/PhysRevB.107.024304
  • Y. Yang, C. Xie, Y. Cui, X. Wang, and W. Wu, Maximally charged single-pair multi-Weyl point phonons in P 23-type BeH 2. Phys. Rev. B 107(5) (2023), pp. 054310. doi:10.1103/PhysRevB.107.054310
  • Y. Gupta, M.M. Sinha, and S.S. Verma, Investigations of mechanical and thermoelectric properties of ‘AlNiP’novel half-Heusler alloy. Mater. Chem. Phys. 265 (2021), pp. 124518. doi:10.1016/j.matchemphys.2021.124518

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.