20
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Enhancing the plasticity of HfZrTiCrx alloys by forming single phase solid solutions via reducing Cr content

, , , , , & ORCID Icon show all
Received 18 Dec 2023, Accepted 08 May 2024, Published online: 27 May 2024

References

  • J.W. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31 (2006), pp. 633–648.
  • J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys. Jom 65 (2013), pp. 1759–1771.
  • J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (2004), pp. 299–303.
  • B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377 (2004), pp. 213–218.
  • W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, and P.K. Liaw, Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 118 (2021), pp. 100777.
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19 (2016), pp. 349–362.
  • Y. Fu, J. Li, H. Luo, C. Du, and X. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J. Mater. Sci. Technol. 80 (2021), pp. 217–233.
  • A.O. Moghaddam, M. Sudarikov, N. Shaburova, D. Zherebtsov, V. Zhivulin, A.L. Solizod, A. Starikov, S. Veselkov, O. Samoilova, and E. Trofimov, High temperature oxidation resistance of W-containing high entropy alloys. J. Alloys Compd. 897 (2022), pp. 162733.
  • B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7 (2016), pp. 10602.
  • T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. Int. J. Miner. Metall. Mater. 27 (2020), pp. 1318–1325.
  • M.X. Ren, B.S. Li, and H.Z. Fu, Formation condition of solid solution type high-entropy alloy. Trans. Nonferrous Met. Soc. China 23 (2013), pp. 991–995.
  • H.Y. Chen, C.W. Tsai, C.C. Tung, J.W. Yeh, T.T. Shun, C.C. Yang, and S.K. Chen, Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys. Ann. Chim. Sci. Mat. 31 (2006), pp. 685–698.
  • J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261 (2006), pp. 513–519.
  • S. Wei, S.J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E.S. Park, and C.C. Tasan, Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 19 (2020), pp. 1175–1181.
  • Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10 (2008), pp. 534–538.
  • S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109 (2011), pp. 103505.
  • Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, and Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574 (2019), pp. 223–227.
  • Y. Chen, Y. Fang, X. Fu, Y. Lu, S. Chen, H. Bei, and Q. Yu, Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy. J. Mater. Sci. Technol. 73 (2021), pp. 101–107.
  • M. Zhang, L. Zhang, J. Fan, G. Li, P.K. Liaw, and R. Liu, Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content. Mater. Sci. Eng. A 733 (2018), pp. 299–306.
  • L. Fang, J. Wang, X. Li, X. Tao, Y. Ouyang, and Y. Du, Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf0.2Crx refractory high entropy alloy. J. Alloys Compd. 924 (2022), pp. 166593.
  • W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60 (2015), pp. 1–8.
  • J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, and S.J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mat. Chem. Phys. 103 (2007), pp. 41–46.
  • J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh b, and Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62 (2014), pp. 105–113.
  • B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, and M.X. Wang, Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J. Alloy. Compd. 493 (2010), pp. 148–153.
  • A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46 (2005), pp. 2817–2829.
  • S. Guo and C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21 (2011), pp. 433–446.
  • Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, and Y. Zhang, A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater. Des. 96 (2016), pp. 10–15.
  • C. Xiang, H.M. Fu, Z.M. Zhang, E.H. Han, H.F. Zhang, J.Q. Wang, and G.D. Hu, Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. J. Alloy. Compd. 818 (2020), pp. 153352.
  • J.H. Zhu, C.T. Liu, L.M. Pike, and P.K. Liaw, Enthalpies of formation of binary Laves phases. Intermetallics 10 (2002), pp. 579–595.
  • Y. Fan, P. Cheng, Y.L. Yao, Z. Yang, and K. Egland, Effect of phase transformations on laser forming of Ti–6Al–4V alloy. J. Appl. Phys. 98 (2005), pp. 013518.
  • P. Yadav and K.K. Saxena, Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: an overview. Mat. Today Proc. 26 (2020), pp. 2546–2557.
  • W.S.S. Malinova, Z. Guoa, C.C. Tangb, and A.E. Longa, Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater. Charact. 48 (2002), pp. 279–295.
  • L. Zhang, H. Fu, S. Ge, Z. Zhu, H. Li, H. Zhang, A. Wang, and H. Zhang, Phase transformations in body-centered cubic NbxHfZrTi high-entropy alloys. Mater. Charact. 142 (2018), pp. 443–448.
  • A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar, Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy. J. Mater. Res. 33 (2018), pp. 946–957.
  • B. Chanda and J. Das, Evolution of microstructure homogeneity and mechanical properties in nano-/ultrafine eutectic CoCrFeNiNb (0.45 ≤ x ≤ 0.65) high entropy alloy ingots and cast rods. J. Alloys Compd. 901 (2022), pp. 163610.
  • Q. Tang, P. Qi, T. Wang, J. Hu, J. Yin, B. Li, and Z. Nie, Formation mechanism of lamellar bimodal microstructure and mechanical property in the high temperature near α titanium alloy. J. Alloy. Compd. 938 (2023), pp. 168289.
  • T. Zhang, J. Zhu, T. Yang, J. Luan, H. Kong, W. Liu, B. Cao, S. Wu, D. Wang, Y. Wang, and C.T. Liu, A new α+β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state. Scr. Mater. 207 (2022), pp. 114260.
  • Y. Zhuo, C. Yang, C. Fan, and S. Lin, Effects of trace Sn and Cr addition on microstructure and mechanical properties of TC17 titanium alloy repaired by wire arc additive manufacturing. J. Alloys Compd. 888 (2021), pp. 161473.
  • H. Pouraliakbar, S.H. Shim, Y.K. Kim, M.S. Rizi, H. Noh, and S.L. Hong, Microstructure evolution and mechanical properties of (CoCrNi)90(AlTiZr)5(CuFeMo)5 multicomponent alloy: a pathway through multicomponent alloys toward new superalloys. J. Alloys Compd. 860 (2021), pp. 158412.
  • J.J. Yi, L. Yang, L. Wang, M.Q. Xu, and L.S. Liu, Equiatomic, Cu-containing CrCuFeTiV 3D transition metal high entropy alloy with an enhanced strength and hardness synergy. Met. Mater. Int. 28 (2021), pp. 227–236.
  • J. Yi, L. Yang, L. Wang, and M. Xu, Lightweight, refractory high-entropy alloy, CrNbTa0.25TiZr, with high yield strength. Met. Mater. Int. 28 (2021), pp. 448–455.
  • M. Abdullah, M. Mukarram, T.B. Yaqub, F. Fernandes, and K. Yaqoob, Development of eutectic high entropy alloy by addition of W to CoCrFeNi HEA. Int. J. Refract. Met. Hard Mater. 115 (2023), pp. 106300.
  • W. Zheng, S. Lü, S. Wu, X. Chen, and W. Guo, Development of MoNbVTax refractory high entropy alloy with high strength at elevated temperature. Mater. Sci. Eng. A. 850 (2022), pp. 143554.
  • H. Zhang, Z. Zhu, H. Huang, T. He, H. Yan, Y. Zhang, Y. Lu, T. Wang, and T. Li, Microstructures, mechanical properties, and irradiation tolerance of the Ti–Zr–Nb–V–Mo refractory high-entropy alloys. Intermetallics 157 (2023), pp. 107873.
  • T. Stasiak, M.A. Sow, A. Addad, M. Touzin, F. Béclin, and C. Cordier, Processing and characterization of a mechanically alloyed and hot press sintered high entropy alloy from the Al-Cr-Fe-Mn-Mo family. Jom 74 (2022), pp. 971–980.
  • R. Wang, Y. Tang, Z. Lei, Y. Ai, Z. Tong, S. Li, Y. Ye, and S. Bai, Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Mater. Des. 213 (2022), pp. 110356.
  • Z. Cao, Y. Ma, Y. Cai, G. Wang, G. Pan, H. Ren, G. Zhai, Z. Zhang, P. Li, and X. Meng, Nanolamellar medium entropy alloy composites with high strength and large plasticity. J. Alloys Compd. 873 (2021), pp. 159775.
  • Y.I.L. Rogal, M. Lai, F. Körmann, A. Kalinowska, and B. Grabowski, Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc-Ti-Zr-Hf-Re system. Mater. Des. 192 (2020), pp. 108716.
  • H.J.T. Huang, Y. Lu, T. Wang, and T. Li, Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys. Appl. Phys. A 125 (2019), pp. 1–5.
  • M.L.B.Z. Wang, X.J. Wang, P.K. Liaw, R.P. Guo, and J.W. Qiao, Deformation mechanisms in hexagonal close-packed high-entropy alloys. J. Appl. Phys. 129 (2021), pp. 175104.
  • M.L.B.J.W. Qiao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, and M.C. Gao, Rare-earth high entropy alloys with hexagonal close-packed structure. J. Appl. Phys. 124 (2018), pp. 195101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.