35
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Understanding the molecular origin of aging in the three topological phases of network glasses

, &
Received 29 Jan 2024, Accepted 16 May 2024, Published online: 19 Jun 2024

References

  • J.C. Phillips, Topology of covalent non-crystalline solids. 1. Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34(2) (1979), pp. 153–181. doi:10.1016/0022-3093(79)90033-4.
  • J.C. Phillips, Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and As-Si-Ge. J. Non-Cryst. Solids 43(1) (Jan. 1981), pp. 37–77. doi:10.1016/0022-3093(81)90172-1.
  • J.C. Phillips, Constraint theory and hierarchical protein dynamics. J. Phys.-Condens. Matter. 16(44) (Nov. 2004), pp. S5065–S5072. doi:10.1088/0953-8984/16/44/004.
  • J.C. Maxwell, L. On the calculation of the equilibrium and stiffness of frames. Philos. Mag. Ser. 4 27(182) (Apr. 1864), pp. 294–299. doi:10.1080/14786446408643668.
  • J.L. Lagrange, Mechanique Analytique, chez la veuve Desaint. 1788.
  • L. Thomas, T.A. Instruments. Modulated DSC Technology, Chapters 1–9, 2005.
  • R. Chbeir, A. Welton, M. Burger, S. Chakravarty, S. Dash, S. Bhosle, K. Gunasekera, B.S. Almutairi, B. Goodman, M. Micoulaut, and P. Boolchand, Glass transition, topology, and elastic models of Se-based glasses. J. Am. Ceram. Soc. 106(6) (Feb. 2023), pp. 3277–3302. doi:10.1111/jace.19003.
  • S. Dash, P. Chen, and P. Boolchand, Molecular origin of aging of pure Se glass: Growth of inter-chain structural correlations, network compaction, and partial ordering. J. Chem. Phys. 146(22) (Jun. 2017), pp. 224506. doi:10.1063/1.4983480.
  • R. Chbeir, A. Welton, and P. Boolchand, Topological origin of the super-flexible phase of Se and Se-rich glasses and aging-induced 5-fold narrowing of glass transition width. Phys. Status Solidi B 259(1) (2022), pp. 2100400. doi:10.1002/pssb.202100400.
  • K. Murase and T. Fukunaga, Optical Effects in Amorphous Semiconductors, American Institute of Physics, No. 120, New York, 1984.
  • F. Wang, S. Mamedov, P. Boolchand, B. Goodman, and M. Chandrasekhar, Pressure Raman effects and internal stress in network glasses. Phys. Rev. B 71(17) (May 2005), pp. 174201. doi:10.1103/PhysRevB.71.174201.
  • P. Boolchand, D.G. Georgiev, and B. Goodman, Discovery of the intermediate phase in chalcogenide glasses. J. Optoelectron. Adv. Mater. 3(3) (2001), pp. 703–720.
  • P. Boolchand, D.G. Georgiev, and M. Micoulaut, Nature of the glass transition in chalcogenides. J. Optoelectron. Adv. Mater. 4(4) (2002), pp. 823–836.
  • S.V. Bhosle, Direct evidence for abrupt rigidity and stress transitions in dry and homogeneous bulk GexSe100-x glasses. University of Cincinnati, 2011. Accessed June 23, 2021. Available at https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear = 10&p10_accession_num = ucin1307106143.
  • S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, Melt homogenization and self-organization in chalcogenides-part I. Int. J. Appl. Glass Sci. 3(3) (Sep. 2012), pp. 189–204. doi:10.1111/j.2041-1294.2012.00093.x.
  • S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, Melt homogenization and self-organization in chalcogenides-part II. Int. J. Appl. Glass Sci. 3(3) (Sep. 2012), pp. 205–220. doi:10.1111/j.2041-1294.2012.00092.x.
  • Y. Cai and M.F. Thorpe, Floppy modes in network glasses. Phys. Rev. B 40(15) (Nov. 1989), pp. 10535–10542. doi:10.1103/PhysRevB.40.10535.
  • P. Boolchand, R.N. Enzweiler, R.L. Cappelletti, W.A. Kamitakahara, Y. Cai, and M.F. Thorpe, Vibrational thresholds in covalent networks. Solid State Ion. 39(1) (Jun. 1990), pp. 81–89. doi:10.1016/0167-2738(90)90029-Q.
  • W.A. Kamitakahara, R.L. Cappelletti, P. Boolchand, B. Halfpap, F. Gompf, D.A. Neumann, and H. Mutka, Vibrational densities of states and network rigidity in chalcogenide glasses. Phys. Rev. B 44(1) (Jul. 1991), pp. 94–100. doi:10.1103/PhysRevB.44.94.
  • P. Boolchand, Insulating and Semiconducting Glasses, World Scientific, Singapore, 2000.
  • V.K. Gogi, A. Mandal, A. Welton, S. Bhosle, S. Chakraborty, K. Gunasekera, P. Boolchand, C. Mohanty, S. Chakravarty, and B.S. Almutairi, Linking molecular origin of melt fragility index with topological phases of network glasses. J. Non-Cryst. Solids 631 (May 2024), pp. 122920. doi:10.1016/j.jnoncrysol.2024.122920.
  • K. Gunasekera, S. Bhosle, P. Boolchand, and M. Micoulaut, Superstrong nature of covalently bonded glass-forming liquids at select compositions. J. Chem. Phys. 139(16) (Oct. 2013), pp. 164511. doi:10.1063/1.4826463.
  • R. Chbeir, M. Bauchy, M. Micoulaut, and P. Boolchand, Evidence for a correlation of melt fragility index with topological phases of multicomponent glasses. Front. Mater. 6 (2019), pp. 173. doi:10.3389/fmats.2019.00173.
  • M. Burger, A. Welton, M. McDonald, R. Chbeir, S. Chakravarty, B.S. Almutairi, S. Mamedov, and P. Boolchand, Evidence for 3-D network of P-centered pyramidal P(Se1/2)3 and quasi-tetrahedral SeP(Se1/2)3 local structures and their 3-membered ring super structure counterparts decoupled from quasi 1D- ethylene-like P2Se2+x (x = 2,1,0) chains in PxSe100−x glasses. J. Alloys Compd. 895 (Feb. 2022), pp. 162645. doi:10.1016/j.jallcom.2021.162645.
  • J. Barré, A.R. Bishop, T. Lookman, and A. Saxena, Adaptability and “intermediate phase” in randomly connected networks. Phys. Rev. Lett. 94(20) (May 2005), pp. 208701. doi:10.1103/PhysRevLett.94.208701.
  • M. Bauchy, M. Micoulaut, M. Celino, S. Le Roux, M. Boero, and C. Massobrio, Angular rigidity in tetrahedral network glasses with changing composition. Phys. Rev. B 84(5) (2011), pp. 054201. doi:10.1103/PhysRevB.84.054201.
  • M. Micoulaut, Concepts and applications of rigidity in non-crystalline solids: A review on new developments and directions. Adv. Phys. X 1(2) (Mar. 2016), pp. 147–175. doi:10.1080/23746149.2016.1161498.
  • M. Micoulaut, Relaxation and physical aging in network glasses: A review. Rep. Prog. Phys. 79(6) (Jun. 2016), pp. 066504. doi:10.1088/0034-4885/79/6/066504.
  • P. Boolchand, M. Bauchy, M. Micoulaut, and C. Yildirim, Topological phases of chalcogenide glasses encoded in the melt dynamics. Phys. Status Solidi B 255(6) (2018), pp. 1800027. doi:10.1002/pssb.201800027.
  • R. Kerner and J.C. Phillips, Quantitative principles of silicate glass chemistry. Solid State Commun. 117(1) (Nov. 2000), pp. 47–51. doi:10.1016/S0038-1098(00)00403-8.
  • O. Laurent, B. Mantisi, and M. Micoulaut, Structure and topology of soda-lime silicate glasses: Implications for window glass. J. Phys. Chem. B 118(44) (Nov. 2014), pp. 12750–12762. doi:10.1021/jp506155p.
  • J.C. Phillips and M.F. Thorpe, Phase Transitions and Self-Organization in Electronic and Molecular Networks, Kluwer Academic/Plenum Publishers, New York, 2000.
  • P. Wray, Gorilla Glass 3 explained (and it is a modeling first for Corning!). Ceram Tech Today, Jan. 2013. Available at http://ceramics.org/ceramictechtoday/2013/01/07/gorilla-glass-3-explained-and-it-is-a-modeling-first-for-corning/.
  • M.C. Onbaşlı, A. Tandia, and J.C. Mauro, Mechanical and compositional design of high-strength corning gorilla® glass, in Handbook of Materials Modeling: Applications: Current and Emerging Materials, W. Andreoni and S. Yip, eds., Springer International Publishing, Cham, 2020. pp. 1997–2019. doi:10.1007/978-3-319-44680-6_100.
  • A.J. Rader, B.M. Hespenheide, L.A. Kuhn, and M.F. Thorpe, Protein unfolding: Rigidity lost. Proc. Natl. Acad. Sci. 99(6) (Mar. 2002), pp. 3540–3545. doi:10.1073/pnas.062492699.
  • B. Almutairi, S. Chakravarty, R. Chbeir, P. Boolchand, and M. Micoulaut, Melt dynamics, nature of glass transition and topological phases of equimolar GexAsxS100-2x ternary glasses. J. Alloys Compd. 868 (Jul. 2021), pp. 159101. doi:10.1016/j.jallcom.2021.159101.
  • A. Welton, R. Chbeir, M. McDonald, M. Burger, B.S. Almutairi, S. Chakravarty, and P. Boolchand, Unusual role of P–P bonds on melt dynamics and topological phases of the equimolar GexPxSe100–2x glass system. J. Phys. Chem. C 124(45) (2020), pp. 25087–25106.
  • U. Vempati and P. Boolchand, The thermally reversing window in ternary GexPxS1−2x glasses. J. Phys. Condens. Matter. 16(44) (Oct. 2004), pp. S5121. doi:10.1088/0953-8984/16/44/010.
  • S. Chakraborty and P. Boolchand, Topological origin of fragility, network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GeS glasses. J. Phys. Chem. B 118(8) (Feb. 2014), pp. 2249–2263. doi:10.1021/jp411823j.
  • S. Chakravarty, R. Chbeir, P. Chen, M. Micoulaut, and P. Boolchand, Correlating melt dynamics and configurational entropy change with topological phases of AsxS100-x glasses and the crucial role of melt/glass homogenization. Front. Mater. 6 (2019), pp. 166. doi:10.3389/fmats.2019.00166.
  • P. Boolchand, P. Chen, and U. Vempati, Intermediate phases, structural variance and network demixing in chalcogenides: The unusual case of group V sulfides. J. Non-Cryst. Solids 355(37–42) (Oct. 2009), pp. 1773–1785. doi:10.1016/j.jnoncrysol.2008.11.046.
  • D.I. Novita and P. Boolchand, Synthesis and structural characterization of dry AgPO3 glass by Raman scattering, infrared reflectance, and modulated differential scanning calorimetry. Phys. Rev. B 76(18) (Nov. 2007), pp. 184205. doi:10.1103/PhysRevB.76.184205.
  • A. Mandal, V.K. Gogi, C. Mohanty, R. Chbeir, and P. Boolchand, Emerging role of local and extended range molecular structures on functionalities of topological phases of (Na2O)x(P2O5)100-x glasses using Raman scattering and modulated DSC. Int. J. Appl. Glass Sci. 12(1) (2021), pp. 89–110. doi:10.1111/ijag.15809.
  • K. Vignarooban, P. Boolchand, M. Micoulaut, M. Malki, and W.J. Bresser, Rigidity transitions in glasses driven by changes in network dimensionality and structural groupings. EPL Europhys. Lett. 108(5) (2014), pp. 56001. doi:10.1209/0295-5075/108/56001.
  • S. Chakraborty, P. Boolchand, M. Malki, and M. Micoulaut, Designing heavy metal oxide glasses with threshold properties from network rigidity. J. Chem. Phys. 140(1) (Jan. 2014), pp. 014503. doi:10.1063/1.4855695.
  • Y. Vaills, T. Qu, M. Micoulaut, F. Chaimbault, and P. Boolchand, Direct evidence of rigidity loss and self-organization in silicate glasses. J. Phys. Condens. Matter. 17(32) (2005), pp. 4889. doi:10.1088/0953-8984/17/32/003.
  • M. Bauchy and M. Micoulaut, Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour. Nat. Commun. 6 (Mar. 2015), pp. 6398. doi:10.1038/ncomms7398.
  • M. Tatsumisago, B.L. Halfpap, J.L. Green, S.M. Lindsay, and C.A. Angell, Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox. Phys. Rev. Lett. 64(13) (Mar. 1990), pp. 1549–1552. doi:10.1103/PhysRevLett.64.1549.
  • U. Senapati and A.K. Varshneya, Viscosity of chalcogenide glass-forming liquids: An anomaly in the ‘strong’ and ‘fragile’ classification. J. Non-Cryst. Solids 197(2) (May 1996), pp. 210–218. doi:10.1016/0022-3093(95)00628-1.
  • G. Yang, Y. Gueguen, J.C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, Physical properties of the GexSe1−x glasses in the 0< x< 0.42 range in correlation with their structure. J. Non-Cryst. Solids 377 (Oct. 2013), pp. 54–59. doi:10.1016/j.jnoncrysol.2013.01.049.
  • P. Boolchand and W.J. Bresser, The structural origin of broken chemical order in GeSe2 glass. Philos. Mag. B 80(10) (Oct. 2000), pp. 1757–1772. doi:10.1080/13642810008216504.
  • R. Bhageria, K. Gunasekera, P. Boolchand, and M. Micoulaut, Fragility and molar volumes of non-stoichiometric chalcogenides: The crucial role of melt/glass homogenization. Phys. Status Solidi B 251(7) (Jul. 2014), pp. 1322–1329. doi:10.1002/pssb.201350165.
  • J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, and D.C. Allan, Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. 106(47) (Nov. 2009), pp. 19780–19784. doi:10.1073/pnas.0911705106.
  • H. Eyring and J. Hirschfelder, The theory of the liquid state. J. Phys. Chem. 41(2) (1937), pp. 249–257. doi:10.1021/j150380a007.
  • D.R. Baker, Estimation of diffusion coefficients during interdiffusion of geologic melts: Application of transition state theory. Chem. Geol. 98(1) (Jul. 1992), pp. 11–21. doi:10.1016/0009-2541(92)90089-N.
  • B. Streetman and S. Banerjee, Solid State Electronic Devices, Vol. 4, Prentice Hall, Upper Saddle River, 2000.
  • K. Trachenko, Theory of Liquids: From Excitations to Thermodynamics, Cambridge University Press, Cambridge, 2023.
  • M.F. Thorpe, Rigidity percolation in glassy structures. J. Non-Cryst. Solids 76(1) (Nov. 1985), pp. 109–116. doi:10.1016/0022-3093(85)90056-0.
  • E. Zhu, Y. Liu, X. Sun, G. Yin, Q. Jiao, S. Dai, and C. Lin, Correlation between thermo-mechanical properties and network structure in GexS100–x chalcogenide glasses. J. Non-Cryst. Solids X 1 (Mar. 2019), pp. 100015. doi:10.1016/j.nocx.2019.100015.
  • Y. Kawamoto and S. Tsuchihashi, Properties and structure of glasses in the system Ge-S. J. Am. Ceram. Soc. 54(3) (1971), pp. 131–135. doi:10.1111/j.1151-2916.1971.tb12239.x.
  • Y. Kawamoto and S. Tsuchihashi, Thermal analysis of Ge-S glasses. J. Am. Ceram. Soc. 54(10) (1971), pp. 526–527. doi:10.1111/j.1151-2916.1971.tb12194.x.
  • P. Boolchand and J. Grothaus, Molecular structure of melt-quenched GeSe2 and GeS2 glasses compared, in Proceedings of the 17th International Conference on the Physics of Semiconductors, J.D. Chadi and W.A. Harrison, eds., Springer, New York, NY, 1985, pp. 833–836. doi:10.1007/978-1-4615-7682-2_185.
  • A. Hrubý, Glass-forming tendency in the GeSx system. Czechoslov. J. Phys. B 23(11) (Nov. 1973), pp. 1263–1272. doi:10.1007/BF01591209.
  • E. Bychkov, M. Miloshova, D.L. Price, C.J. Benmore, and A. Lorriaux, Short, intermediate and mesoscopic range order in sulfur-rich binary glasses. J. Non-Cryst. Solids 352(1) (Jan. 2006), pp. 63–70. doi:10.1016/j.jnoncrysol.2005.11.002.
  • G. Saffarini, On topological transitions and chemical ordering in network glasses of the Ge-Ga-S system. Solid State Commun. 91(7) (Aug. 1994), pp. 577–580. doi:10.1016/0038-1098(94)90378-6.
  • J. Köhrle, R. Brigelius-Flohé, A. Böck, R. Gärtner, O. Meyer, and L. Flohé, Selenium in biology: Facts and medical perspectives. Biol. Chem. 381(9–10) (Sep. 2000), pp. 849–864. doi:10.1515/BC.2000.107.
  • C.R. Mayo, Electrophotographic copying apparatus. US3062108A, Nov. 06, 1962. Accessed May 25, 2022. Available at https://patents.google.com/patent/US3062108A/en?oq = M.+R.%2c+%E2%80%9CElectrophotographic+copying+apparatus%2c%E2%80%9D+US+patent+3%2c062%2c108+(Nov.+6%2c+1962).
  • C.W. Dodge, G.F.N. Jr. H. Waschhauser, and I. Lucaci, Combined ink-jet copier, printer, scanner. USD398632S, Sep. 22, 1998. Accessed May 25, 2022. Available at https://patents.google.com/patent/USD398632/en.
  • P. Boolchand, B.L. Robinson, and S. Jha, Nuclear electric field gradient and mean-square displacement tensors in tellurium metal. Phys. Rev. B 2(9) (Nov. 1970), pp. 3463–3471. doi:10.1103/PhysRevB.2.3463.
  • X. Feng, W.J. Bresser, and P. Boolchand, Direct evidence for stiffness threshold in chalcogenide glasses. Phys. Rev. Lett. 78(23) (Jun. 1997), pp. 4422–4425. doi:10.1103/PhysRevLett.78.4422.
  • P. Boolchand, X. Feng, and W.J. Bresser, Rigidity transitions in binary Ge–Se glasses and the intermediate phase. J. Non-Cryst. Solids 293–295 (Nov. 2001), pp. 348–356. doi:10.1016/S0022-3093(01)00867-5.
  • R. Zallen, Pressure-Raman effects and vibrational scaling laws in molecular crystals: S8 and As2S3. Phys. Rev. B 9(10) (May 1974), pp. 4485–4496. doi:10.1103/PhysRevB.9.4485.
  • K. Jackson, A. Briley, S. Grossman, D.V. Porezag, and M.R. Pederson, Raman-active modes of a - GeSe2 and a - GeS2: A first-principles study. Phys. Rev. B 60(22) (Dec. 1999), pp. R14985–R14989. doi:10.1103/PhysRevB.60.R14985.
  • C. Mohanty, A. Mandal, V.K. Gogi, P. Chen, D. Novita, R. Chbeir, M. Bauchy, M. Micoulaut, and P. Boolchand, Linking melt dynamics with topological phases and molecular structure of sodium phosphate glasses from calorimetry, Raman scattering, and infrared reflectance. Front. Mater. 6 (2019), pp. 69. doi:10.3389/fmats.2019.00069.
  • K. Rompicharla, D.I. Novita, P. Chen, P. Boolchand, M. Micoulaut, and W. Huff, Abrupt boundaries of intermediate phases and space filling in oxide glasses. J. Phys. Condens. Matter. 20(20) (May 2008), pp. 202101. doi:10.1088/0953-8984/20/20/202101.
  • G. Adam and J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43(1) (Jul. 1965), pp. 139–146. doi:10.1063/1.1696442.
  • H. He and M.F. Thorpe, Elastic properties of glasses. Phys. Rev. Lett. 54(19) (May 1985), pp. 2107–2110. doi:10.1103/PhysRevLett.54.2107.
  • D. Franzblau and J. Tersoff, Elastic properties of a network model of glasses. Phys. Rev. Lett. 68(14) (Apr. 1992), pp. 2172–2175. doi:10.1103/PhysRevLett.68.2172.
  • M. Micoulaut and G.G. Naumis, Glass transition temperature variation, cross-linking and structure in network glasses: A stochastic approach. Europhys. Lett. 47(5) (Sep. 1999), pp. 568. doi:10.1209/epl/i1999-00427-7.
  • W.J. Bresser, P. Boolchand, P. Suranyi, and J.P. de Neufville, Direct evidence for intrinsically broken chemical ordering in melt-quenched glasses. Phys. Rev. Lett. 46(26) (Jun. 1981), pp. 1689–1692. doi:10.1103/PhysRevLett.46.1689.
  • W.J. Bresser, P. Boolchand, P. Suranyi, and J.G. Hernandez, Molecular phase separation and cluster size in GeSe2 glass. Hyperfine Interact. 27(1) (Mar. 1986), pp. 389–392. doi:10.1007/BF02354788.
  • P. Boolchand, Mössbauer spectroscopy – a rewarding probe of morphological structure of semiconducting glasses, in Physical Properties of Amorphous Materials, Institute for Amorphous Studies Series, D. Adler, B.B. Schwartz, and M.C. Steele, eds., Springer, Boston, MA, 1985. pp. 221–260. doi:10.1007/978-1-4899-2260-1_7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.