0
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effect of A-site disorder and reduced grain size on low temperature resistivity minima and magnetoresistance behaviour in Nd0.7-xGdxSr0.3MnO3 (0 ≤ x ≤ 0.3)

&
Received 19 Jan 2024, Accepted 19 Jun 2024, Published online: 01 Aug 2024

References

  • Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys 69 (2006), pp. 797–851.
  • A.P. Ramirez, Colossal magnetoresistance. J. Phys. Condens. Matter 9 (1997), pp. 8171–8199.
  • G.H. Jonker and J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica 16 (1950), pp. 337–349.
  • C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure. Phys. Rev 82 (1951), pp. 403–405.
  • C.N.R. Rao, P.N. Santhosh, R.S. Singh, and A. Arulraj, Effect of internal pressure on charge-ordered rare earth manganates. J. Solid State Chem. 135 (1998), pp. 169–173.
  • T. Terai, N.T.T. Kakeshita, T. Fukuda, T. Saburi, and M.H. Honda, Electronic and magnetic properties of (La-Dy)0.7Ca0.3MnO3. Phys. Rev. B 58 (1998), pp. 908–912.
  • K.F. Wang, Y. Wang, L.F. Wang, S. Dong, D. Li, and Z.D. Zhang, et al., Cluster-glass state in manganites induced by A -site cation-size disorder. Phys. Rev. B Condens. Matter Mater. Phys. 73 (2006), pp. 1–10.
  • H.Y. Hwang, T.T.M. Palstra, S.W. Cheong, and B. Batlogg, Pressure effects on the magnetoresistance in doped manganese perovskites. Phys. Rev. B 52 (1995), pp. 15046–15049.
  • R. Mathieu, M. Uchida, Y. Kaneko, J.P. He, X.Z. Yu, and R. Kumai, et al., Bandwidth-disorder phase diagram of half-doped layered manganites. Phys. Rev. B 74 (2006), pp. 3–6.
  • K.F. Wang, F. Yuan, S. Dong, D. Li, Z.D. Zhang, and Z.F. Ren, et al., A-site disorder induced collapse of charge-ordered state and phase separated phase in manganites. Appl. Phys. Lett 89 (2006), pp. 89–91.
  • L.M. Rodriguez-Martinez and J.P. Attfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54 (1996), pp. R15622–R15625.
  • K.R. Mavani and P.L. Paulose, Effects of cation disorder and size on metamagnetism in a -site substituted Pr0.5Ca0.5MnO3 system. Appl. Phys. Lett. 86 (2005), pp. 1–3.
  • S.C. Bhargava, H.P. Kunkel, S. Singh, S.K. Malik, D.D. Buddhikot, and A.H. Morrish, Phase separations in La0.7−xDyxCa0.3Mn(Fe)O3. Phys. Rev. B 71 (2005), pp. 104419.
  • J. Hemberger, S. Lobina, H.A. Krug Von Nidda, N. Tristan, V.Y. Ivanov, and A.A. Mukhin, et al., Complex interplay of 3d and 4f magnetism in La1-xGd xMnO3. Phys. Rev. B Condens. Matter Mater. Phys 70 (2004), pp. 1–8.
  • P. Dey, T.K. Nath, and A. Banerjee, Effect of disorder on magnetic ordering of La0.5 Gd0.2Sr0.3MnO3 manganite. J. Phys. Condens. Matter 19 (2007), pp. 376204.
  • N. Ghosh, S. Elizabeth, H.L. Bhat, U.K. Rößler, K. Nenkov, S. Rößler, K. Dörr, and K.H. Müller, Effect of rare-earth-site cations on the physical properties of La0.7−yNdyPb0.3MnO3 single crystals. Phys. Rev. B 70 (2004), pp. 184436.
  • Y. Sun, M.B. Salamon, W. Tong, and Y. Zhang, Magnetism, electronic transport, and colossal magnetoresistance of (La0.7-xGdx)Sr0.3MnO3 (0 ≤ x≤0.6). Phys. Rev. B Condens. Matter Mater. Phys. 66 (2002), pp. 944141–944146.
  • M.A. López-Quintela, L.E. Hueso, J. Rivas, and F. Rivadulla, Intergranular magnetoresistance in nanomanganites. Nanotechnology 14 (2003), pp. 212–219.
  • P. Dey and T.K. Nath, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface. Phys. Rev. B Condens. Matter Mater. Phys 73 (2006), pp. 1–14.
  • V.D. Okunev, R. Szymczak, M. Baran, H. Szymczak, and P. Gierłowski, Effect of Coulomb blockade on the low- and high-temperature resistance of La1-xMxMnO3 (M = Sr,Ca) films. Phys. Rev. B Condens. Matter Mater. Phys. 74 (2006), pp. 1–12.
  • L. Balcells, J. Fontcuberta, B. Martínez, and X. Obradors, High-field magnetoresistance at interfaces in manganese perovskites. Phys. Rev. B Condens. Matter Mater. Phys. 58 (1998), pp. R14697–R14700.
  • R. Németh and B. Mühlschlegel, Hopping conductivity in granular systems. Zeitschr. Phys. B Condens. Matter 70 (1988), pp. 159–162.
  • J. Zhang, Y. Xu, S. Cao, G. Cao, Y. Zhang, and C. Jing, Kondo-like transport and its correlation with the spin-glass phase in perovskite manganites. Phys. Rev. B Condens. Matter Mater. Phys. 72 (2005), pp. 1–6.
  • R. Nandiniand and N. Kumar, Resistance minimum in dilute “magnetic” alloys in the absence of impurity moments. Phys. Status Solidi 63 (1974), pp. 377–384.
  • D. Kumar, J. Sankar, J. Narayan, R.K. Singh, and A.K. Majumdar, Low-temperature resistivity minima in colossal magnetoresistive La0.7Ca0.3MnO3 thin films. Phys. Rev. B Condens. Matter Mater. Phys 65 (2002), pp. 094407.
  • D.S. Rana, J.H. Markna, R.N. Parmar, D.G. Kuberkar, P. Raychaudhuri, and J. John, et al., Low-temperature transport anomaly in the magnetoresistive compound (La0.5Pr0.2)Ba0.3MnO3. Phys. Rev. B Condens. Matter Mater. Phys. 71 (2005), pp. 3–6.
  • E.J. Guo, L. Wang, Z.P. Wu, H.B. Lu, K.J. Jin, and J. Gao, Magnetic field mediated low-temperature resistivity upturn in electron-doped La1-xHfxMnO3 manganite oxides. J. Appl. Phys. 112 (2012), pp. 123710.
  • M. Ziese, Searching for quantum interference effects in La0.7Ca0.3MnO3 films on SrTiO3. Phys. Rev. B Condens. Matter Mater. Phys. 68 (2003), pp. 7–10.
  • A. Tiwari and K.P. Rajeev, Low-temperature electrical transport in La0.7A0.3MnO3, (A: Ca, Sr, Ba). Solid State Commun. 111 (1999), pp. 33–37.
  • E. Rozenberg, M. Auslender, I. Felner, and G. Gorodetsky, Low-temperature resistivity minimum in ceramic manganites. J. Appl. Phys. 88 (2000), pp. 2578–2582.
  • E. Rozenberg, Comment on “Magnetic field mediated low-temperature resistivity upturn in electron-doped La1-xHfxMnO3 manganite oxides” [J. Appl. Phys. 112, 123710 (2012)]. J. Appl. Phys. 115 (2014), pp. 2012–2015.
  • R.K. Pati, J.C. Ray, and P. Pramanik, Synthesis of nanocrystalline α-alumina powder using triethanolamine. J. Am. Ceram. Soc. 84 (2001), pp. 2849–2852.
  • R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Y. Tokura, and K. Ohoyama, et al., Hole-concentration-induced transformation of the magnetic and orbital structures in Nd1-xSrxMnO3. Phys. Rev. B Condens. Matter Mater. Phys. 60 (1999), pp. 9506–9517.
  • J. Park, M.S. Kim, J.G. Park, I.P. Swainson, H.C. Ri, H.J. Lee, K.H. Kim, T.W. Noh, S.W. Cheong, and C. Lee, Study of the low-temperature magnetic properties of Nd0.7Sr0.3MnO3. J. Korean Phys. Soc. 36 (2000), pp. 412–416.
  • A. Krichene, W. Boujelben, S. Mukherjee, N.A. Shah, and P.S. Solanki, An empirical model for magnetic field dependent resistivity and magnetoresistance in manganites: application on polycrystalline charge-ordered La0.4Gd0.1Ca0.5MnO3. Phys. Chem. Chem. Phys. 20 (2018), pp. 12608–12617.
  • T. Sarkar, M.V. Kamalakar, and A.K. Raychaudhuri, Electrical transport properties of nanostructured ferromagnetic perovskite oxides La0.67Ca0.33MnO3 and La0.5Sr0.5CoO3 at low temperatures (5 K ≥ T ≥ 0.3 K) and high magnetic field. New J. Phys. 14 (2012), pp. 033026.
  • L. Maritato, C. Adamo, C. Barone, G.M. De Luca, A. Galdi, and P. Orgiani, et al., Low-temperature resistivity of La0.7Sr0.3MnO3 ultra thin films: role of quantum interference effects. Phys. Rev. B Condens. Matter Mater. Phys. 73 (2006), pp. 1–7.
  • R.R. Jia, J.C. Zhang, R.K. Zheng, D.M. Deng, H.U. Habermeier, and H.L.W. Chan, et al., Effects of ferroelectric-poling-induced strain on the quantum correction to low-temperature resistivity of manganite thin films. Phys. Rev. B Condens. Matter Mater. Phys. 82 (2010), pp. 1–5.
  • W. Niu, M. Gao, X. Wang, F. Song, J. Du, and X. Wang, et al., Evidence of weak localization in quantum interference effects observed in epitaxial La0.7Sr0.3MnO3 ultrathin films. Sci. Rep. 6 (2016), pp. 1–7.
  • Y. Xu, J. Zhang, G. Cao, C. Jing, and S. Cao, Low-temperature resistivity minimum and weak spin disorder of polycrystalline La2/3Ca1/3 MnO3 in a magnetic field. Phys. Rev. B Condens. Matter Mater. Phys. 73 (2006), pp. 1–7.
  • B. Al’Tshuler and A. Aronov, Contribution to the theory of disordered metals in strongly doped semiconductors. Sov. J. Exp. Theor. Phys. 50 (1979), pp. 968.
  • P.A. Lee and T.V. Ramakrishnan, Disordered electronic systems. Rev. Mod. Phys. 57 (1985), pp. 287–337.
  • Y. Kalyana Lakshmi, K. Raju, and P. Venugopal Reddy, Thermopower and resistivity studies of Nd-Na-Mn-O manganites. J. Appl. Phys. 113 (2013), pp. 163701.
  • J.M.D. Coey, Magnetic localization and magnetoresistance in mixed-valence manganites and related ferromagnetic oxides. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 356 (1998), pp. 1519–1541.
  • M.K. Srivastava, R. Prasad, P.K. Siwach, M.P. Singh, and H.K. Singh, Impact of size mismatch induced quenched disorder on phase fluctuation and low field magnetotransport in polycrystalline Nd0.58−xGdxSr0.42MnO3. J. Appl. Phys. 107 (2010), pp. 797.
  • P. Raychaudhuri, T.K. Nath, A.K. Nigam, and R. Pinto, A phenomenological model for magnetoresistance in granular polycrystalline colossal magnetoresistive materials: the role of spin polarized tunneling at the grain boundaries. J. Appl. Phys. 84 (1998), pp. 2048–2052.
  • P. Dey, T.K. Nath, U. Kumar, and P.K. Mukhopadhyay, Effect of nanosize modulation of granular La0.67Sr0.33MnO3 manganites on temperature-dependent low-field spin-polarized tunneling magnetoresistance. J. Appl. Phys. 98 (2005), pp. 0–8.
  • P. Dey and T.K. Nath, Tunable room temperature low-field spin polarized tunneling magnetoresistance of La0.7Sr0.3MnO3 nanoparticles. Appl. Phys. Lett. 89 (2006), pp. 2004–2007.
  • A. Krichene, W. Boujelben, N.A. Shah, and P.S. Solanki, Possible universal behavior of magnetoresistance and resistivity isotherms in magnetic materials. J. Alloys Compd. 820 (2020), pp. 153400.
  • T. Sarkar, A.K. Raychaudhuri, A.K. Bera, and S.M. Yusuf, Effect of size reduction on the ferromagnetism of the manganite La1−xCaxMnO3(x=0.33). New J. Phys. 12 (2010), pp. 123026.
  • F. Fauth, E. Suard, C. Martin, and F. Millange, Antiparallel ordering of Mn and Nd magnetic moments in Nd0.7Ba0.3MnO3. Phys. B Condens. Matter 241–243 (1997), pp. 427–429.
  • H. Terashita and J.J. Neumeier, Possible role of phase segregation in the disagreement between the metal-insulator and ferromagnetic transition temperatures in some colossal magnetoresistance compounds. Phys. Rev. B Condens. Matter Mater. Phys. 63 (2001), pp. 1744361–1744366.
  • M. Uehara, S. Mori, C.H. Chen, and S.W. Cheong, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399 (1999), pp. 560–563.
  • V. Hardy, A. Wahl, and C. Martin, Percolation transitions tuned by temperature, magnetic field, and time in a phase-separated manganite. Phys. Rev. B Condens. Matter Mater. Phys. 64 (2001), pp. 1–6.
  • A. Moreo, J. Verges, and E. Dagotto, Phase separation scenario for manganese oxides. J. Magn. Magn. Mater. 226–230 (2001), pp. 773–774.
  • J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, and E. Dagotto, Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett 87 (2001), pp. 277202-2–277202-4.
  • S. Kundu and T.K. Nath, Evidence of electronic phase arrest and glassy ferromagnetic behaviour in (Nd0.4Gd0.3)Sr0.3MnO3 manganite: Comparative study between bulk and nanometric samples. J. Phys. Condens. Matter 23 (2011), pp. 356001.
  • S. Lee, H.Y. Hwang, B.I. Shraiman, W.D. Ratcliff, and S.-W. Cheong, Intergrain magnetoresistance via second-order tunneling in perovskite manganites. Phys. Rev. Lett. 82 (1999), pp. 4508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.