169
Views
1
CrossRef citations to date
0
Altmetric
Articles

Dynamic modelling of a ground-coupled solar ejector cooling system

ORCID Icon & ORCID Icon
Pages 1903-1937 | Received 20 May 2022, Accepted 30 Aug 2022, Published online: 17 Sep 2022

References

  • Affolter, M., and B. Matthey. 2009. “Sondes géothermiques verticales: Guide d’aide au dimensionnement des ouvrages de petite dimension et procédures d’autorisation dans le Canton de Neuchâtel,” Programme cantonal de développement de la géothermie à Neuchâtel, Neuchâtel.
  • Al-Hamed, K. H. M., and I. Dincer. 2019. “Investigation of a Concentrated Solar-Geothermal Integrated System with a Combined Ejector-Absorption Refrigeration Cycle for a Small Community.” International Journal of Refrigeration 106: 407–426. doi:10.1016/j.ijrefrig.2019.06.026.
  • Al-Nimr, M. A., B. Tashtoush, and A. Hasan. 2020. “A Novel Hybrid Solar Ejector Cooling System with Thermoelectric Generators.” Energy 198, doi:10.1016/j.energy.2020.117318.
  • Aligolzadeh, F., and A. Hakkaki-Fard. 2019. “A Novel Methodology for Designing a Multi-Ejector Refrigeration System.” Applied Thermal Engineering 151: 26–37. doi:10.1016/J.APPLTHERMALENG.2019.01.112.
  • Allouche, Y., S. Varga, C. Bouden, and A. C. Oliveira. 2017. “Dynamic Simulation of an Integrated Solar-Driven Ejector Based air Conditioning System with PCM Cold Storage.” Applied Energy 190: 600–611. doi:10.1016/J.APENERGY.2017.01.001.
  • Almahmoud, H. A., F. A. Al-Sulaiman, N. I. Ibrahim, R. ben Mansour, and Y. M. Alkhulaifi. 2021. “Energetic Performance Analysis of a Solar-Driven Hybrid Ejector Cooling and Humidification-Dehumidification Desalination System.” Energy 230, doi:10.1016/j.energy.2021.120849.
  • Askalany, A. A., and E. S. Ali. 2020. “A new Approach Integration of Ejector Within Adsorption Desalination Cycle Reaching COP Higher Than one.” Sustainable Energy Technologies and Assessments 41, doi:10.1016/J.SETA.2020.100766.
  • Ball, D. A., R. D. Fischer, and D. L. Hodget. 1983. “Design Methods for Ground-Source Heat Pumps.” ASHRAE Transactions 89 (2B): 416–440.
  • Bellos, E., I. C. Theodosiou, L. Vellios, and C. Tzivanidis. 2018. “Investigation of a Novel Solar-Driven Refrigeration System with Ejector.” Thermal Science and Engineering Progress 8: 284–295. doi:10.1016/j.tsep.2018.09.005.
  • Bellos, E., and C. Tzivanidis. 2017. “Optimum Design of a Solar Ejector Refrigeration System for Various Operating Scenarios.” Energy Conversion and Management 154: 11–24. doi:10.1016/j.enconman.2017.10.057.
  • Bergman, T. L., A. S. Lavine, F. P. Incropera, and D. P. Dewitt. 2011. Fundamentals of Heat and Mass Transfer. 7th ed. New York: Wiley.
  • Bernier, M. A. 2001. “Ground-Coupled Heat Pump System Simulation.” ASHRAE Transactions 107: 605–616.
  • Braimakis, K. 2021. “Solar Ejector Cooling Systems: A Review.” Renewable Energy 164: 566–602. doi:10.1016/j.renene.2020.09.079.
  • Carslaw, H. S., and J. C. Jaeger. 1946. Conduction of Heat in Solids. Oxford: Claremore Press.
  • Centre Scientifique et Technique du Bâtiment - CSTB. 2021. Accessed December 05, 2021. http://www.cstb.fr/fr/.
  • Chen, J., H. Havtun, and B. Palm. 2014a. “Investigation of Ejectors in Refrigeration System: Optimum Performance Evaluation and Ejector Area Ratios Perspectives.” Applied Thermal Engineering 64 (1–2): 182–191. doi:10.1016/j.applthermaleng.2013.12.034.
  • Chen, J., H. Havtun, and B. Palm. 2014b. “Screening of Working Fluids for the Ejector Refrigeration System.” International Journal of Refrigeration 47: 1–14. doi:10.1016/j.ijrefrig.2014.07.016.
  • Chen, W., M. Liu, D. Chong, J. Yan, A. B. Little, and Y. Bartosiewicz. 2013. “A 1D Model to Predict Ejector Performance at Critical and sub-Critical Operational Regimes.” International Journal of Refrigeration 36 (6): 1750–1761. doi:10.1016/j.ijrefrig.2013.04.009.
  • Chen, W., C. Shi, S. Zhang, H. Chen, D. Chong, and J. Yan. 2017. “Theoretical Analysis of Ejector Refrigeration System Performance Under Overall Modes.” Applied Energy 185: 2074–2084. doi:10.1016/j.apenergy.2016.01.103.
  • Dassault systèmes (3DS). 2019. “Dymola Dynamic Modeling Laboratory User Manual”.
  • Devarajan, Y., B. Nagappan, G. Subbiah, and E. Kariappan. 2021. “Experimental Investigation on Solar-Powered Ejector Refrigeration System Integrated with Different Concentrators.” Environmental Science and Pollution Research 28: 16298–16307. doi:10.1007/s11356-020-12248-z.
  • Duffie, J. A., and W. A. Beckman. 1980. Solar Engineering of Thermal Processes. New York: Wiley.
  • Ersoy, H. K., S. Yalcin, R. Yapici, and M. Ozgoren. 2007. “Performance of a Solar Ejector Cooling-System in the Southern Region of Turkey.” Applied Energy 84: 971–983. doi:10.1016/j.apenergy.2006.10.001.
  • Eskilson, P. 1987. “Thermal Analysis of Heat Extraction Boreholes,” PhD diss., University of Lund, Sweden.
  • Galindo, J., V. Dolz, L. M. García-Cuevas, and A. Ponce-Mora. 2020. “Numerical Evaluation of a Solar-Assisted jet-Ejector Refrigeration System: Screening of Environmentally Friendly Refrigerants.” Energy Conversion and Management 210: 112681. doi:10.1016/J.ENCONMAN.2020.112681.
  • Ghodbane, M., B. Boumeddane, and K. Lahrech. 2021. “Solar Thermal Energy to Drive Ejector HVAC Systems: A Numerical Study Under Blida Climatic Conditions.” Case Studies in Thermal Engineering 28, doi:10.1016/j.csite.2021.101558.
  • Gil, B., and J. Kasperski. 2015. “Efficiency Analysis of Alternative Refrigerants for Ejector Cooling Cycles.” Energy Conversion and Management 94: 12–18. doi:10.1016/J.ENCONMAN.2015.01.056.
  • Géosciences pour une terre durable. 2021. BRGM. Accessed December 01, 2021. https://www.brgm.fr/projet/evaluation-nationale-potentiel-sondes-geothermiques-verticales-focus-sur-region-centre-val.
  • Hellstrom, G. 1991. Ground Heat Storage: Thermal Analyses of Duct Storage Systems. Sweden: Department of Mathematical Physics, University of Lund.
  • Hemidi, A., F. Henry, S. Leclaire, J. M. Seynhaeve, and Y. Bartosiewicz. 2009. “CFD Analysis of a Supersonic air Ejector. Part I: Experimental Validation of Single-Phase and two-Phase Operation.” Applied Thermal Engineering 29 (8–9): 1523–1531. doi:10.1016/j.applthermaleng.2008.07.003.
  • Huang, J., Y. Bi, L. Qin, G. Zang, and H. Li. 2020. “Design Parameters and Dynamic Performance Analysis of a High Efficient Solar-Ground Source Cooling System Using Parabolic Trough Collector.” International Journal of Sustainable Energy 40 (3): 253–282. doi:10.1080/14786451.2020.1806841.
  • Huang, B. J., J. M. Chang, V. A. Petrenko, and K. B. Zhuk. 1998. “A Solar Ejector Cooling System Using Refrigerant R141b.” Solar Energy 64 (4–6): 223–226. doi:10.1016/S0038-092X(98)00082-6.
  • Huang, B. J., J. M. Chang, C. P. Wang, and V. A. Petrenko. 1999. “1-D Analysis of Ejector Performance.” International Journal of Refrigeration 22 (5): 354–364. doi:10.1016/S0140-7007(99)00004-3.
  • Huang, B. J., C. B. Jiang, and F. L. Hu. 1985. “Ejector Performance Characteristics and Design Analysis of jet Refrigeration System.” Journal of Engineering for Gas Turbines and Power 107 (3): 792–802. doi:10.1115/1.3239802.
  • International Energy Association. 2022. “The Future of Cooling – Analysis - IEA.” Accessed January 03, 2022. https://www.iea.org/reports/the-future-of-cooling.
  • Karellas, S., T. C. Roumpedakis, N. Tzouganatos, and K. Braimakis. 2020. “Solar Cooling Technologies”, 1st ed. CRC Press, Taylor & Francis, 2020. Accessed January 05, 2022. https://www.routledge.com/Solar-Cooling-Technologies/Karellas-Roumpedakis-Tzouganatos-Braimakis/p/book/9780367733179.
  • Kavanaugh, S., and K. Rafferty. 2014. Geothermal Heating and Cooling: Design of Ground-Source Heat Pump Systems. Atlanta: ASHRAE.
  • Khalili, S., and L. Garousi Farshi. 2020. “Design and Performance Evaluation of a Double Ejector Boosted Multi-Pressure Level Absorption Cycle for Refrigeration.” Sustainable Energy Technologies and Assessments 42: 100836. doi:10.1016/J.SETA.2020.100836.
  • Li, Z., and L. Liu. 2018. “Economic and Environmental Study of Solar Absorption-Subcooled Compression Hybrid Cooling System.” International Journal of Sustainable Energy 38 (2): 123–140. doi:10.1080/14786451.2017.1422252.
  • Liang, X., S. Zhou, J. Deng, G. He, and D. Cai. 2019. “Thermodynamic Analysis of a Novel Combined Double Ejector-Absorption Refrigeration System Using Ammonia/Salt Working Pairs Without Mechanical Pumps.” Energy 185: 895–909. doi:10.1016/J.ENERGY.2019.07.104.
  • Liu, X. L., D. L. Wang, and Z. H. Fang. 2001. “Modeling of Heat Transfer of a Vertical Bore in Ground-Source Heat Pumps.” Journal of Shandong Institute of Architecture and Engineering 1: 47–51.
  • Munday, J. T., and D. F. Bagster. 1977. “A New Ejector Theory Applied to Steam Jet Refrigeration.” Industrial and Engineering Chemistry Process Design and Development 16 (4): 442–449. doi:10.1021/i260064a003.
  • The National Institute of Standards and Technology. 2018. “NIST Standard Reference Database Number 69”. doi:10.18434/T4D303.
  • Philippe, M. 2010. “Développement et validation expérimentale de modèles d’échangeurs géothermiques horizontaux et verticaux pour le chauffage de bâtiments résidentiels”. https://pastel.archives-ouvertes.fr/pastel-00585632.
  • W. Pridasawas, “Solar-Driven Refrigeration Systems with Focus on the Ejector Cycle,” PhD diss., Royal Institute of Technology, KTH, Sweden, 2006.
  • Quintela, F. R., R. C. Redondo, N. R. Melchor, and M. Redondo. 2009. “A General Approach to Kirchhoff’s Laws.” IEEE Transactions on Education 52 (2): 273–278. doi:10.1109/TE.2008.928189.
  • Rees, S. J. 2016. Advances in Ground-Source Heat Pump Systems. doi:10.1016/C2014-0-03840-3.
  • Reiss, C. 2012. “Protocole de test de réponse thermique,” Final report, BRGM/RP-60816-FR.
  • Ruangtrakoon, N., and S. Aphornratana. 2019. “Design of Steam Ejector in a Refrigeration Application Based on Thermodynamic Performance Analysis.” Sustainable Energy Technologies and Assessments 31: 369–382. doi:10.1016/J.SETA.2018.12.014.
  • Sadeghi, S., and P. Ahmadi. 2021. “Thermo-economic Optimization of a High-Performance CCHP System Integrated with Compressed air Energy Storage (CAES) and Carbon Dioxide Ejector Cooling System.” Sustainable Energy Technologies and Assessments 45: 101112. doi:10.1016/J.SETA.2021.101112.
  • Saleh, B. 2016. “Performance Analysis and Working Fluid Selection for Ejector Refrigeration Cycle.” Applied Thermal Engineering 107: 114–124. doi:10.1016/j.applthermaleng.2016.06.147.
  • Salimpour, M. R., A. Ahmadzadeh, and A. T. Al-Sammarraie. 2019. “Comparative Investigation on the Exergoeconomic Analysis of Solar-Driven Ejector Refrigeration Systems.” International Journal of Refrigeration 99: 80–93. doi:10.1016/J.IJREFRIG.2018.12.008.
  • Selvaraju, A., and A. Mani. 2006. “Experimental Investigation on R134a Vapour Ejector Refrigeration System.” International Journal of Refrigeration 29: 1160–1166. doi:10.1016/j.ijrefrig.2006.01.004.
  • Tashtoush, B. M., M. A. Al-Nimr, and M. A. Khasawneh. 2019. “A Comprehensive Review of Ejector Design, Performance, and Applications.” Applied Energy 240: 138–172. doi:10.1016/j.apenergy.2019.01.185.
  • Tashtoush, B., A. Alshare, and S. Al-Rifai. 2015a. “Hourly Dynamic Simulation of Solar Ejector Cooling System Using TRNSYS for Jordanian Climate.” Energy Conversion and Management 100: 288–299. doi:10.1016/j.enconman.2015.05.010.
  • Tashtoush, B., A. Alshare, and S. Al-Rifai. 2015b. “Performance Study of Ejector Cooling Cycle at Critical Mode Under Superheated Primary Flow.” Energy Conversion and Management 94: 300–310. doi:10.1016/j.enconman.2015.01.039.
  • Tashtoush, B., and M. Bani Younes. 2019. “Comparative Thermodynamic Study of Refrigerants to Select the Best Environment-Friendly Refrigerant for Use in a Solar Ejector Cooling System.” Arabian Journal for Science and Engineering 44: 1165–1184. doi:10.1007/s13369-018-3427-4.
  • Tashtoush, B., and Y. Nayfeh. 2020. “Energy and Economic Analysis of a Variable-Geometry Ejector in Solar Cooling Systems for Residential Buildings.” Journal of Energy Storage 27: 101061. doi:10.1016/J.EST.2019.101061.
  • van Nguyen, V., S. Varga, J. Soares, V. Dvorak, and A. C. Oliveira. 2020. “Applying a Variable Geometry Ejector in a Solar Ejector Refrigeration System.” International Journal of Refrigeration 113: 187–195. doi:10.1016/j.ijrefrig.2020.01.018.
  • Wang, L., J. Liu, T. Zou, J. Du, and F. Jia. 2018. “Auto-tuning Ejector for Refrigeration System.” Energy 161: 536–543. doi:10.1016/J.ENERGY.2018.07.110.
  • Wang, Y., L. Yu, B. Nazir, L. Zhang, and H. Rahmani. 2021. “Innovative Geothermal-Based Power and Cooling Cogeneration System; Thermodynamic Analysis and Optimization.” Sustainable Energy Technologies and Assessments 44: 101070. doi:10.1016/J.SETA.2021.101070.
  • Weiss, W., and M. Spörk-Dür. 2018. “Solar Heat Worldwide 2018 Global Market Development and Trends in 2017. Detailed Market Figures 2016”.
  • Yang, H., P. Cui, and Z. Fang. 2010. “Vertical-borehole Ground-Coupled Heat Pumps: A Review of Models and Systems.” Applied Energy 87 (1): 16–27. doi:10.1016/j.apenergy.2009.04.038.
  • Yapici, R., H. K. Ersoy, A. Aktoprakoǧlu, H. S. Halkaci, and O. Yiǧit. 2008. “Experimental Determination of the Optimum Performance of Ejector Refrigeration System Depending on Ejector Area Ratio.” International Journal of Refrigeration 31 (7): 1183–1189. doi:10.1016/j.ijrefrig.2008.02.010.
  • Zeng, H. Y., N. R. Diao, and Z. H. Fang. 2002. “A Finite Line-Source Model for Boreholes in Geothermal Heat Exchangers.” Heat Transfer - Asian Research 31 (7): 558–567. doi:10.1002/htj.10057.
  • Zeng, H., N. Diao, and Z. Fang. 2003a. “Efficiency of Vertical Geothermal Heat Exchangers in the Ground Source Heat Pump System.” Journal of Thermal Science 12 (1): 77–81. doi:10.1007/s11630-003-0012-1.
  • Zeng, H., N. Diao, and Z. Fang. 2003b. “Heat Transfer Analysis of Boreholes in Vertical Ground Heat Exchangers.” International Journal of Heat and Mass Transfer 46 (23): 4467–4481. doi:10.1016/S0017-9310(03)00270-9.
  • Zhang, Z., X. Feng, D. Tian, J. Yang, and L. Chang. 2020. “Progress in Ejector-Expansion Vapor Compression Refrigeration and Heat Pump Systems.” Energy Conversion and Management 207: 112529. doi:10.1016/J.ENCONMAN.2020.112529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.