443
Views
3
CrossRef citations to date
0
Altmetric
Articles

A review on thermal performance and heat transfer augmentation in solar air heater

&
Pages 1973-2019 | Received 25 May 2022, Accepted 08 Sep 2022, Published online: 29 Sep 2022

References

  • Abdullah, A. S., M. M. Abou Al-sood, Z. M. Omara, M. A. Bek, and A. E. Kabeel. 2018. “Performance Evaluation of a New Counter Flow Double Pass Solar air Heater with Turbulators.” Solar Energy 173 (July): 398–406. doi:10.1016/j.solener.2018.07.073.
  • Abdullah, A. H., H. Z. Abou-Ziyan, and A. A. Ghoneim. 2003. “Thermal Performance of Flat Plate Solar Collector Using Various Arrangements of Compound Honeycomb.” Energy Conversion and Management. 44 (19): 3093–3112. doi:10.1016/S0196-8904(03)00013-X.
  • Abdullah, A. S., M. I. Amro, M. M. Younes, Z. M. Omara, A. E. Kabeel, and F. A. Essa. 2020. “Experimental Investigation of Single Pass Solar Air Heater with Reflectors and Turbulators.” Alexandria Engineering Journal 59 (2): 579–587. doi:10.1016/j.aej.2020.02.004.
  • Abdullah, A. S., Y. A. F. El-Samadony, and Z. M. Omara. 2017. “Performance Evaluation of Plastic Solar Air Heater with Different Cross Sectional Configuration.” Applied Thermal Engineering 121: 218–223. doi:10.1016/j.applthermaleng.2017.04.067.
  • Aboul-Enein, S., A. A. El-Sebaii, M. R. I. Ramadan, and H. G. El-Gohary. 2000. “Parametric Study of a Solar Air Heater with and Without Thermal Storage for Solar Drying Applications.” Renewable Energy 21 (3–4): 505–522. doi:10.1016/S0960-1481(00)00092-6.
  • Abuşka, M., S. Şevik, and A. Kayapunar. 2019. “A Comparative Investigation of the Effect of Honeycomb Core on the Latent Heat Storage with PCM in Solar Air Heater.” Applied Thermal Engineering 148: 684–693. doi:10.1016/j.applthermaleng.2018.11.056.
  • Aharwal, K. R., B. K. Gandhi, and J. S. Saini. 2008. “Experimental Investigation on Heat-Transfer Enhancement due to a Gap in an Inclined Continuous Rib Arrangement in a Rectangular Duct of Solar Air Heater.” Renewable Energy 33 (4): 585–596. doi:10.1016/j.renene.2007.03.023.
  • Ahmad, S. H. A., R. Saidur, I. M. Mahbubul, and F. A. Al-Sulaiman. 2017. “Optical Properties of Various Nanofluids Used in Solar Collector: A Review.” Renewable & Sustainable Energy Reviews 73 (October 2016): 1014–1030. doi:10.1016/j.rser.2017.01.173.
  • Akpinar, E. K., and F. Koçyiĝit. 2010. “Energy and Exergy Analysis of a New Flat-Plate Solar Air Heater Having Different Obstacles on Absorber Plates.” Applied Energy 87 (11): 3438–3450. doi:10.1016/j.apenergy.2010.05.017.
  • Al-damook, A., and W. H. Khalil. 2017. “Experimental Evaluation of an Unglazed Solar Air Collector for Building Space Heating in Iraq.” Renewable Energy 112: 498–509. doi:10.1016/j.renene.2017.05.051.
  • Alam, T., and M. H. Kim. 2017. “A Critical Review on Artificial Roughness Provided in Rectangular Solar Air Heater Duct.” Renewable & Sustainable Energy Reviews 69 (July 2016): 387–400. doi:10.1016/j.rser.2016.11.192.
  • Alam, T., and M. H. Kim. 2017. “Performance Improvement of Double-Pass Solar Air Heater – A State of Art of Review.” Renewable & Sustainable Energy Reviews 79 (March): 779–793. doi:10.1016/j.rser.2017.05.087.
  • Alam, T., R. P. Saini, and J. S. Saini. 2014. “Experimental Investigation on Heat Transfer Enhancement due to V-Shaped Perforated Blocks in a Rectangular Duct of Solar Air Heater.” Energy Conversion and Management. 81: 374–383. doi:10.1016/j.enconman.2014.02.044.
  • Ali, S., and S. P. Deshmukh. 2019. “An Overview: Applications of Thermal Energy Storage Using Phase Change Materials.” Materials Today: Proceedings. 26: 1231–1237. doi:10.1016/j.matpr.2020.02.247.
  • Alkilani, M. M., K. Sopian, M. A. Alghoul, M. Sohif, and M. H. Ruslan. 2011. “Review of Solar Air Collectors with Thermal Storage Units.” Renewable & Sustainable Energy Reviews 15 (3): 1476–1490. doi:10.1016/j.rser.2010.10.019.
  • Alkilani, M. M., K. Sopian, S. Mat, and M. A. Alghoul. 2009. “Output Air Temperature Prediction in a Solar Air Heater Integrated with Phase Change Material.” European Journal of Scientific Research 27 (3): 334–341.
  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. “Thermal Energy Storage Materials and Systems for Solar Energy Applications.” Renewable & Sustainable Energy Reviews 68 (February 2016): 693–706. doi:10.1016/j.rser.2016.10.021.
  • Arunkumar, H. S., S. Kumar, and K. V. Karanth. 2020a. “Analysis of a Solar Air Heater for Augmented Thermohydraulic Performance Using Helicoidal Spring Shaped Fins-A Numerical Study.” Renewable Energy 160: 297–311. doi:10.1016/j.renene.2020.06.098.
  • Arunkumar, H. S., K. Vasudeva Karanth, and S. Kumar. 2020b. “Review on the Design Modifications of a Solar Air Heater for Improvement in the Thermal Performance.” Sustainable Energy Technologies and Assessments 39 (March): 100685. doi:10.1016/j.seta.2020.100685.
  • Azmi, M. S. M., M. Y. H. Othman, M. H. H. Ruslan, and Z. A. A. Majid. 2013. “Thermal Performance of Solar Collector with Multi Direction Properties Using Cross Absorber.” AIP Conference Proceedings 1528 (May): 113–117. doi:10.1063/1.4803579.
  • Bahrehmand, D., M. Ameri, and M. Gholampour. 2015. “Energy and Exergy Analysis of Different Solar Air Collector Systems with Forced Convection.” Renewable Energy 83: 1119–1130. doi:10.1016/j.renene.2015.03.009.
  • Baig, W., and H. M. Ali. 2019. “An Experimental Investigation of Performance of a Double Pass Solar Air Heater with Foam Aluminum Thermal Storage Medium.” Case Studies in Thermal Engineering 14: 100440. doi:10.1016/j.csite.2019.100440.
  • Bekele, A., M. Mishra, and S. Dutta. 2013. “Heat Transfer Augmentation in Solar Air Heater Using Delta-Shaped Obstacles Mounted on the Absorber Plate.” International Journal of Sustainable Energy 32 (1): 53–69. doi:10.1080/14786451.2011.598637.
  • Bhagoria, J. L., J. S. Saini, and S. C. Solanki. 2002. “Heat Transfer Coefficient and Friction Factor Correlations for Rectangular Solar Air Heater Duct Having Transverse Wedge Shaped Rib Roughness on the Absorber Plate.” Renewable Energy 25 (3): 341–369. doi:10.1016/S0960-1481(01)00057-X.
  • Bharadwaj, G., K. Sharma, and K. Mausam. 2021. “Factors Influencing the Performance of Solar Air Heater (SAH) Having Artificial Coarseness: A Review.” Journal of Thermal Engineering 7 (6): 1556–1576. doi:10.18186/thermal.991100.
  • Bhargava, A. K., H. P. Garg, and V. K. Sharma. 1973. “A Two-Pass Solar Air Heater.” Energy 8 (4): 267–276. doi:10.1016/0360-5442(83)90102-0.
  • Bopche, S. B., and M. S. Tandale. 2009. “Experimental Investigations on Heat Transfer and Frictional Characteristics of a Turbulator Roughened Solar Air Heater Duct.” International Journal of Heat and Mass Transfer 52 (11–12): 2834–2848. doi:10.1016/j.ijheatmasstransfer.2008.09.039.
  • Bouadila, S., S. Kooli, M. Lazaar, S. Skouri, and A. Farhat. 2013. “Performance of a New Solar Air Heater with Packed-Bed Latent Storage Energy for Nocturnal use.” Applied Energy 110: 267–275. doi:10.1016/j.apenergy.2013.04.062.
  • Bouadila, S., M. Lazaar, S. Skouri, S. Kooli, and A. Farhat. 2014. “Energy and Exergy Analysis of a New Solar Air Heater with Latent Storage Energy.” International Journal of Hydrogen Energy 39 (27): 15266–15274. doi:10.1016/j.ijhydene.2014.04.074.
  • Cadafalch, J., and R. Cònsul. 2014. “Detailed Modelling of Flat Plate Solar Thermal Collectors with Honeycomb-Like Transparent Insulation.” Solar Energy 107: 202–209. doi:10.1016/j.solener.2014.06.003.
  • Chabane, F., N. Moummi, and S. Benramache. 2014. “Experimental Study of Heat Transfer and Thermal Performance with Longitudinal Fins of Solar Air Heater.” Journal of Advanced Research 5 (2): 183–192. doi:10.1016/j.jare.2013.03.001.
  • Chamarthi, S., and S. Singh. 2021. “A Comprehensive Review of Experimental Investigation Procedures and Thermal Performance Enhancement Techniques of Solar Air Heaters.” International Journal of Energy Research 45 (4): 5098–5164. doi:10.1002/er.6255.
  • Chamoli, S., R. Chauhan, N. S. Thakur, and J. S. Saini. 2012. “A Review of the Performance of Double Pass Solar Air Heater.” Renewable & Sustainable Energy Reviews 16 (1): 481–492. doi:10.1016/j.rser.2011.08.012.
  • Chamoli, S., R. Lu, D. Xu, and P. Yu. 2018. “Thermal Performance Improvement of a Solar Air Heater Fitted with Winglet Vortex Generators.” Solar Energy 159 (October 2017): 966–983. doi:10.1016/j.solener.2017.11.046.
  • Chauhan, P. M., C. Choudhury, and H. P. Garg. 1996. “Comparative Performance of Coriander Dryer Coupled to Solar Air Heater and Solar Air-Heater-cum-Rockbed Storage.” Applied Thermal Engineering 16 (6): 475–486.
  • Chen, Z., R. Zhu, N. Sheng, C. Zhu, and Z. Rao. 2022. “Synchronously Improved Thermal Conductivity and Anti-Leakage Performance for Phase Change Composite by SiC Nanowires Modified Wood Carbon.” Journal of Energy Storage 47 (September 2021): 103567. doi:10.1016/j.est.2021.103567.
  • Choudhury, C., P. M. Chauhan, and H. P. Garg. 1995. “Economic Design of a Rock bed Storage Device for Storing Solar Thermal Energy.” Solar Energy 55 (1): 29–37. doi:10.1016/0038-092X(95)00023-K.
  • Daliran, A., and Y. Ajabshirchi. 2018. “Theoretical and Experimental Research on Effect of Fins Attachment on Operating Parameters and Thermal Efficiency of Solar Air Collector.” Information Processing in Agriculture 5 (4): 411–421. doi:10.1016/j.inpa.2018.07.004.
  • De Winter, F. 1991. Solar Collectors, Energy Storage, and Materials. Cambridge, MA: The MIT Press.
  • Deo, N. S., S. Chander, and J. S. Saini. 2016. “Performance Analysis of Solar Air Heater Duct Roughened with Multigap V-Down Ribs Combined with Staggered Ribs.” Renewable Energy 91: 484–500. doi:10.1016/j.renene.2016.01.067.
  • Depaiwa, N., T. Chompookham, and P. Promvonge. 2010. “Thermal Enhancement in a Solar Air Heater Channel Using Rectangular Winglet Vortex Generators.” Proceedings of the International Conference Energy Sustain. Dev. Issues Strateg. ESD 2010 (2), doi:10.1109/esd.2010.5598864.
  • Egolf, P. W., N. Amacker, G. Gottschalk, G. Courret, A. Noume, and K. Hutter. 2018. “A Translucent Honeycomb Solar Collector and Thermal Storage Module for Building Façades.” International Journal of Heat and Mass Transfer 127: 781–795. doi:10.1016/j.ijheatmasstransfer.2018.06.111.
  • El-khawajah, M. F., L. B. Y. Aldabbagh, and F. Egelioglu. 2011. “The Effect of Using Transverse Fins on a Double Pass Flow Solar Air Heater Using Wire Mesh as an Absorber.” Solar Energy 85 (7): 1479–1487. doi:10.1016/j.solener.2011.04.004.
  • ElGamal, R., S. Kishk, S. Al-Rejaie, and G. ElMasry. 2021. “Incorporation of a Solar Tracking System for Enhancing the Performance of Solar Air Heaters in Drying Apple Slices.” Renewable Energy 167: 676–684. doi:10.1016/j.renene.2020.11.137.
  • Eswaramoorthy, M. 2016. “Thermal Performance of V-Trough Solar Air Heater with the Thermal Storage for Drying Applications.” Appl. Sol. Energy (English Transl. Geliotekhnika) 52 (4): 245–250. doi:10.3103/S0003701X16040071.
  • Fakoor Pakdaman, M., A. Lashkari, H. Basirat Tabrizi, and R. Hosseini. 2011. “Performance Evaluation of a Natural-Convection Solar Air-Heater with a Rectangular-Finned Absorber Plate.” Energy Conversion and Management 52 (2): 1215–1225. doi:10.1016/j.enconman.2010.09.017.
  • Farid, M. M., A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj. 2004. “A Review on Phase Change Energy Storage: Materials and Applications.” Energy Conversion and Management 45 (9–10): 1597–1615. doi:10.1016/j.enconman.2003.09.015.
  • Fudholi, A., K. Sopian, M. Y. Othman, M. H. Ruslan, and B. Bakhtyar. 2013a. “Energy Analysis and Improvement Potential of Finned Double-Pass Solar Collector.” Energy Conversion and Management 75: 234–240. doi:10.1016/j.enconman.2013.06.021.
  • Fudholi, A., K. Sopian, M. H. Ruslan, and M. Y. Othman. 2013b. “Performance and Cost Benefits Analysis of Double-Pass Solar Collector with and Without Fins.” Energy Conversion and Management 76: 8–19. doi:10.1016/j.enconman.2013.07.015.
  • Garg, H. P., R. Jha, C. Choudhury, and G. Datta. 1991. “Theoretical Analysis on a New Finned Type Solar Air Heater.” Energy 16 (10): 1231–1238. doi:10.1016/0360-5442(91)90152-C.
  • Garg, H. P., V. K. Sharma, and A. K. Bhargava. 1985. “Theory of Multiple-Pass Solar Air Heaters.” Energy 10 (5): 589–599. doi:10.1016/0360-5442(85)90090-8.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016. “Experimental and CFD Investigation of Convection Heat Transfer in Solar Air Heater with Reverse L-Shaped Ribs.” Solar Energy 131: 275–295. doi:10.1016/j.solener.2016.02.040.
  • Ghiami, A., and S. Ghiami. 2018. “Comparative Study Based on Energy and Exergy Analyses of a Baffled Solar Air Heater with Latent Storage Collector.” Applied Thermal Engineering 133: 797–808. doi:10.1016/j.applthermaleng.2017.11.111.
  • Ghritlahre, H. K., P. Chandrakar, and A. Ahmad. 2021. “A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network.” Annals of Data Science 8 (3): 405–449. doi:10.1007/s40745-019-00236-1.
  • Ghritlahre, H. K., M. Verma, J. S. Parihar, D. S. Mondloe, and S. Agrawal. 2022. “A Detailed Review of Various Types of Solar Air Heaters Performance.” Solar Energy 237 (March): 173–195. doi:10.1016/j.solener.2022.03.042.
  • Gilani, S. E., H. H. Al-Kayiem, D. E. Woldemicheal, and S. I. Gilani. 2017. “Performance Enhancement of Free Convective Solar Air Heater by Pin Protrusions on the Absorber.” Solar Energy 151: 173–185. doi:10.1016/j.solener.2017.05.038.
  • Goel, V., V. S. Hans, S. Singh, R. Kumar, S. K. Pathak, M. Singla, and R. P. Saini. 2021. “A Comprehensive Study on the Progressive Development and Applications of Solar Air Heaters.” Solar Energy 229: 112–147. doi:10.1016/j.solener.2021.07.040.
  • Goel, V., R. Kumar, S. Bhattacharyya, V. V. Tyagi, and A. M. Abusorrah. 2021b. “A Comprehensive Parametric Investigation of Hemispherical Cavities on Thermal Performance and Flow-Dynamics in the Triangular-Duct Solar-Assisted Air-Heater.” Renewable Energy 173: 896–912. doi:10.1016/j.renene.2021.04.006.
  • Gupta, N. K., and T. Alam. 2021. “A Review on Augmentation in Thermal Performance of Solar Air Heater.” IOP Confernce Series Materials Science and Engineering 1116 (1): 012064. doi:10.1088/1757-899x/1116/1/012064.
  • Gupta, A., A. Roy, S. Gupta, and M. Gupta. 2020. “International Journal of Heat and Mass Transfer Numerical Investigation Towards Implementation of Punched Winglet as Vortex Generator for Performance Improvement of a Fin-and-Tube Heat Exchanger.” International Journal of Heat and Mass Transfer 149: 119171. doi:10.1016/j.ijheatmasstransfer.2019.119171.
  • Gupta, D., S. C. Solanki, and J. S. Saini. 1997. “Thermohydraueic Performance of Solar Air Heaters with Roughened Absorber Plates.” Solar Energy 61 (1): 33–42. doi:10.1016/S0038-092X(97)00005-4.
  • Hachemi, A. 1995. “Thermal Performance Enhancement of Solar Air Heaters, by a Fan-Blown Absorber Plate with Rectangular Fins.” International Journal of Energy Research 19 (7): 567–577. doi:10.1002/er.4440190703.
  • Han, G. G. D., H. Li, and J. C. Grossman. 2017. “Optically-controlled Long-Term Storage and Release of Thermal Energy in Phase-Change Materials.” Nature Communications 8 (1), doi:10.1038/s41467-017-01608-y.
  • Hans, V. S., R. S. Gill, and S. Singh. 2017. “Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially with Broken Arc Ribs.” Experimental Thermal and Fluid Science 80: 77–89. doi:10.1016/j.expthermflusci.2016.07.022.
  • Hans, V. S., R. P. Saini, and J. S. Saini. 2010. “Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially with Multiple v-Ribs.” Solar Energy 84 (6): 898–911. doi:10.1016/j.solener.2010.02.004.
  • Hassan, E. S. Fath. 1995. “Thermal Performance of a Simple Design Solar Air Heater with Built-in Thermal Energy Storage System.” Renewable Energy 6 (8): 1033–1039. doi:10.1016/0960-1481(94)00085-6.
  • Hassan, H., and S. Abo-Elfadl. 2018. “Experimental Study on the Performance of Double Pass and Two Inlet Ports Solar Air Heater (SAH) at Different Configurations of the Absorber Plate.” Renewable Energy 116: 728–740. doi:10.1016/j.renene.2017.09.047.
  • Hernández, A. L., and J. E. Quiñonez. 2013. “Analytical Models of Thermal Performance of Solar Air Heaters of Double-Parallel Flow and Double-Pass Counter Flow.” Renewable Energy 55: 380–391. doi:10.1016/j.renene.2012.12.050.
  • Hernández, A. L., and J. E. Quiñonez. 2018. “Experimental Validation of an Analytical Model for Performance Estimation of Natural Convection Solar Air Heating Collectors.” Renewable Energy 117: 202–216. doi:10.1016/j.renene.2017.09.082.
  • Ho, C. D., H. Chang, R. C. Wang, and C. S. Lin. 2012. “Performance Improvement of a Double-Pass Solar Air Heater with Fins and Baffles Under Recycling Operation.” Applied Energy 100: 155–163. doi:10.1016/j.apenergy.2012.03.065.
  • Ho, C. D., H. M. Yeh, and T. C. Chen. 2011. “Collector Efficiency of Upward-Type Double-Pass Solar Air Heaters with Fins Attached.” International Communications in Heat and Mass Transfer 38 (1): 49–56. doi:10.1016/j.icheatmasstransfer.2010.09.015.
  • Hosseini, S. S., A. Ramiar, and A. A. Ranjbar. 2018. “Numerical Investigation of Natural Convection Solar Air Heater with Different Fins Shape.” Renewable Energy 117: 488–500. doi:10.1016/j.renene.2017.10.052.
  • Hu, J., K. Liu, M. Guo, G. Zhang, Z. Chu, and M. Wang. 2019. “Performance Improvement of Baffle-Type Solar Air Collector Based on First Chamber Narrowing.” Renewable Energy 135: 701–710. doi:10.1016/j.renene.2018.12.049.
  • Hu, J., X. Sun, J. Xu, and Z. Li. 2013. “Numerical Analysis of Mechanical Ventilation Solar Air Collector with Internal Baffles.” Energy and Buildings. 62: 230–238. doi:10.1016/j.enbuild.2013.03.015.
  • Hu, J., and G. Zhang. 2019. “Performance Improvement of Solar Air Collector Based on Airflow Reorganization: A Review.” Applied Thermal Engineering 155: 592–611. doi:10.1016/j.applthermaleng.2019.04.021.
  • Jain, P. K., A. Lanjewar, K. B. Rana, and M. L. Meena. 2021. “Effect of Fabricated V-rib Roughness Experimentally Investigated in a Rectangular Channel of Solar Air Heater: A Comprehensive Review.” Environtal Science and Polluttoin Research. 28 (4): 4019–4055. doi:10.1007/s11356-020-11415-6.
  • Jamal-Abad, M. T., S. Saedodin, and M. Aminy. 2016. “Heat Transfer in Concentrated Solar Air-Heaters Filled with a Porous Medium with Radiation Effects: A Perturbation Solution.” Renewable Energy 91: 147–154. doi:10.1016/j.renene.2016.01.050.
  • Jaurker, A. R., J. S. Saini, and B. K. Gandhi. 2006. “Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness.” Solar Energy 80 (8): 895–907. doi:10.1016/j.solener.2005.08.006.
  • Jin, D., M. Zhang, P. Wang, and S. Xu. 2015. “Numerical Investigation of Heat Transfer and Fluid Flow in a Solar Air Heater Duct with Multi V-Shaped Ribs on the Absorber Plate.” Energy 89: 178–190. doi:10.1016/j.energy.2015.07.069.
  • Jin, R., H. Zheng, X. Ma, and Y. Zhao. 2020. “Performance Investigation of Integrated Concentrating Solar Air Heater with Curved Fresnel Lens as the Cover.” Energy 194, doi:10.1016/j.energy.2019.116808.
  • Kabeel, A. E., M. H. Hamed, Z. M. Omara, and A. W. Kandeal. 2017a. “Solar Air Heaters: Design Configurations, Improvement Methods and Applications – A Detailed Review.” Renewable & Sustainable Energy Reviews 70 (December): 1189–1206. doi:10.1016/j.rser.2016.12.021.
  • Kabeel, A. E., M. M. Khairat Dawood, and A. I. Shehata. 2017b. “Augmentation of Thermal Efficiency of the Glass Evacuated Solar Tube Collector with Coaxial Heat Pipe with Different Refrigerants and Filling Ratio.” Energy Conversion and Management 138: 286–298. doi:10.1016/j.enconman.2017.01.048.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2016. “Experimental Investigation of Thermal Performance of Flat and v-Corrugated Plate Solar Air Heaters with and Without PCM as Thermal Energy Storage.” Energy Conversion and Management 113: 264–272. doi:10.1016/j.enconman.2016.01.068.
  • Kalash, A. R., S. S. Shijer, and L. J. Habeeb. 2020. “Thermal Performance Improvement of Double Pass Solar Air Heater.” journal of Mechanical Engineering Research 43 (5): 355–372.
  • Kalita, P. 2020. Solar Energy Engineering and Technology, Lec 24: Basics and Performance Analysis of Solar Air Heaters. National Programme for Technology Enhanced Learning (NPTEL) Online Course, Centre for Energy IIT Guwahati. https://youtu.be/zR_XPBqIeyM.
  • Kalogirou, S. A. 2004. “Solar Thermal Collectors and Applications.” Progress in Energy and Combustion Science 30 (3): 231–295. doi:10.1016/j.pecs.2004.02.001.
  • Karim, M. A., and M. N. A. Hawlader. 2006. “Performance Evaluation of a v-Groove Solar Air Collector for Drying Applications.” Applied Thermal Engineering 26 (1): 121–130. doi:10.1016/j.applthermaleng.2005.03.017.
  • Karmare, S. V., and A. N. Tikekar. 2007. “Heat Transfer and Friction Factor Correlation for Artificially Roughened Duct with Metal Grit Ribs.” International Journal of Heat and Mass Transfer 50 (21–22): 4342–4351. doi:10.1016/j.ijheatmasstransfer.2007.01.065.
  • Karmare, S. V., and A. N. Tikekar. 2009. “Experimental Investigation of Optimum Thermohydraulic Performance of Solar Air Heaters with Metal rib Grits Roughness.” Solar Energy 83 (1): 6–13. doi:10.1016/j.solener.2008.05.017.
  • Karwa, R. 2003. “Experimental Studies of Augmented Heat Transfer and Friction in Asymmetrically Heated Rectabgular Ducts with Ribs on the Heated Wall in Transverse, Inclined, v-Continous and v-Discrete Pattern.” International Communications in Heat and Mass Transfer 30 (2): 241–250. doi:10.1016/S0735-1933(03)00035-6.
  • Karwa, R., and B. K. Maheshwari. 2009. “Heat Transfer and Friction in an Asymmetrically Heated Rectangular Duct with Half and Fully Perforated Baffles at Different Pitches.” International Communications in Heat and Mass Transfer 36 (3): 264–268. doi:10.1016/j.icheatmasstransfer.2008.11.005.
  • Karwa, R., S. C. Solanki, and J. S. Saini. 2001. “Thermo-hydraulic Performance of Solar Air Heaters Having Integral Chamfered Rib Roughness on Absorber Plates.” Energy 26 (2): 161–176. doi:10.1016/S0360-5442(00)00062-1.
  • Khatri, R., S. Goswami, M. Anas, S. Sharma, S. Agarwal, and S. Aggarwal. 2020. “Performance Evaluation of an Arched Plate Solar Air Heater with Porous Aluminum Wire Mesh Cylindrical Fins.” Energy Reports 6: 627–633. doi:10.1016/j.egyr.2020.11.177.
  • Khimsuriya, Y. D., D. K. Patel, Z. Said, H. Panchal, M. M. Jaber, L. Natrayan, and A. S. El-Shafay. 2022. “Artificially Roughened Solar Air Heating Technology- A Comprehensive Review.” Applied Thermal Engineering 214 (June): 118817. doi:10.1016/j.applthermaleng.2022.118817.
  • Kiliç, F., T. Menlik, and A. Sözen. 2018. “Effect of Titanium Dioxide/Water Nanofluid use on Thermal Performance of the Flat Plate Solar Collector.” Solar Energy 164 (February): 101–108. doi:10.1016/j.solener.2018.02.002.
  • Kolb, A., E. R. F. Winter, and R. Viskanta. 1999. “Experimental Studies on a Solar Air Collector with Metal Matrix Absorber.” Solar Energy 65 (2): 91–98. doi:10.1016/S0038-092X(98)00117-0.
  • Kumar, A., R. Kumar, R. Maithani, R. Chauhan, M. Sethi, A. Kumari, and S. Kumar. 2017a. “Correlation Development for Nusselt Number and Friction Factor of a Multiple Type V-Pattern Dimpled Obstacles Solar Air Passage.” Renewable Energy 109: 461–479. doi:10.1016/j.renene.2017.03.030.
  • Kumar, R. 2019. “Effect of Dimple Intrusions and Curvature Radius of Rounded Corner Triangular Duct on Fluid Flow and Heat Transfer.” Journal of Thermal Science and Engineering Applications 11 (3): 031001. doi:10.1115/1.4041683.
  • Kumar, A., A. P. Singh, and O. P. Singh. 2020a. “Efficient Designs of Double-Pass Curved Solar Air Heaters.” Renewable Energy 160: 1105–1118. doi:10.1016/j.renene.2020.06.115.
  • Kumar, A., S. K. B. Avinash, and, R. K. Chaudhary. 2020. “A Critical Review on Performance of Solar Air Heaters Technologies and Techniques.” International Journal of advance Research, Ideas and Innovations in Technology 6(2): 334–354.
  • Kumar, R., and P. Chand. 2017. “Performance Enhancement of Solar Air Heater Using Herringbone Corrugated Fins.” Energy 127: 271–279. doi:10.1016/j.energy.2017.03.128.
  • Kumar Dwivedi, M., and M. Choudhary. 2022. “Effect of Various rib Geometries on the Heat Transfer and Friction Characteristics of Solar Air Heater: A Review.” Materials Today: Proceedings 63: 272–282. doi:10.1016/j.matpr.2022.03.072.
  • Kumar, R., and V. Goel. 2021. “Unconventional Solar Air Heater with Triangular flow-Passage: A CFD Based Comparative Performance Assessment of Different Cross- Sectional Rib-Roughnesses.” Renewable Energy 172: 1267–1278. doi:10.1016/j.renene.2021.03.068.
  • Kumar, R., V. Goel, and M. Kumar. 2020b. “Effect of Providing Gap in Multiple-Arc Rib-Roughened Solar Air Heater - Part 1.” 34 (6): 2619–2625. doi:10.1007/s12206-020-0535-3.
  • Kumar, R., V. Goel, and A. Kumar. 2020c. “A Note on the Comparative Analysis Between Rectangular and Modified Duct Heat Exchanger.” Journal of Heat Transfer 142 (4): 041901. doi:10.1115/1.4045755.
  • Kumar, R., V. Goel, A. Kumar, S. Khurana, P. Singh, and S. B. Bopche. 2018a. “Numerical Investigation of Heat Transfer and Friction Factor in Ribbed Triangular Duct Solar Air Heater Using Computational Fluid Dynamics (CFD).” Journal of Mechanical Science and Technology 32 (1): 399–404. doi:10.1007/s12206-017-1240-8.
  • Kumar, R., V. Goel, P. Singh, A. Saxena, and A. Singh. 2019a. “Performance Evaluation and Optimization of Solar Assisted Air Heater with Discrete Multiple Arc Shaped Ribs.” J. Energy Storage 26 (September): 100978. doi:10.1016/j.est.2019.100978.
  • Kumar, R., A. S. Kashyap, P. Singh, V. Goel, and K. Kumar. 2020d. “Innovatively Arranged Curved- Ribbed Solar-Assisted Air Heater: Performance and Correlation Development for Heat and Flow Characteristics.” Journal of Solar Energy Engineering 142 (3): 1–11. doi:10.1115/1.4045827.
  • Kumar, R., M. Kharub, and V. Kumar. 2020e. “Heat Augmented due to Array of Protrusions on Absorber Plate in Solar Heat Exchanger.” Materials Today: Proceedings 38: 2425–2430. doi:10.1016/j.matpr.2020.07.384.
  • Kumar, A., and M. H. Kim. 2016. “Heat Transfer and Fluid Flow Characteristics in Air Duct with Various V-Pattern Rib Roughness on the Heated Plate: A Comparative Study.” Energy 103: 75–85. doi:10.1016/j.energy.2016.02.149.
  • Kumar, R., A. Kumar, and V. Goel. 2018b. “Effect of Rounded Corners on Heat Transfer and Fluid Flow Through Triangular Duct.” Journal of Heat Transfer 140 (12): 1–10. doi:10.1115/1.4040957.
  • Kumar, R., A. Kumar, and V. Goel. 2019b. “Performance Improvement and Development of Correlation for Friction Factor and Heat Transfer Using Computational Fluid Dynamics for Ribbed Triangular Duct Solar Air Heater.” Renewable Energy 131 (a): 788–799. doi:10.1016/j.renene.2018.07.078.
  • Kumar, R., A. Kumar, and V. Goel. 2019c. “Simulation of Flow and Heat Transfer in Triangular Cross- Sectional Solar-Assisted Air Heater.” Journal of Solar Energy Engineering 141 (1): 1–12. doi:10.1115/1.4041098.
  • Kumar, S., R. Kumar, V. Goel, S. Bhattacharyya, and A. Issakhov. 2021. “Exergetic Performance Estimation for Roughened Triangular Duct Used in Solar Air Heaters.” Journal of Thermal Analysis and Calorimetry 145 (3): 1661–1672. doi:10.1007/s10973-021-10852-w.
  • Kumar, A., and A. Layek. 2019. “Nusselt Number and Friction Factor Correlation of Solar Air Heater Having Twisted-rib Roughness on Absorber Plate.” Renewable Energy 130: 687–699. doi:10.1016/j.renene.2018.06.076.
  • Kumar, D., and A. Layek. 2022. “Parametric Analysis of Artificial Rib Roughness for the Enhancement of Thermohydraulic Performance of Solar Air Heater: A Review.” Materials Today: Proceedings 57: 1127–1135. doi:10.1016/j.matpr.2021.10.006.
  • Kumar, D., P. Mahanta, and P. Kalita. December 2019d. “Energy and Exergy Analysis of a Natural Convection Dryer with and Without Sensible Heat Storage Medium.” Journal of Energy Storage 29 (101481): 2020. doi:10.1016/j.est.2020.101481.
  • Kumar, K., D. R. Prajapati, and S. Samir. 2017b. “Heat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened with ‘S’ Shape Ribs.” Experimental Thermal and Fluid Science, doi:10.1016/j.expthermflusci.2016.11.012.
  • Kumar, S., and R. P. Saini. 2009. “CFD Based Performance Analysis of a Solar Air Heater Duct Provided with Artificial Roughness.” Renewable Energy 34 (5): 1285–1291. doi:10.1016/j.renene.2008.09.015.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2013. “Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater with Roughened Duct Having Multi v-Shaped with Gap Rib as Artificial Roughness.” Renewable Energy 58: 151–163. doi:10.1016/j.renene.2013.03.013.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2014. “A Review of Thermohydraulic Performance of Artificially Roughened Solar Air Heaters.” Renewable & Sustainable Energy Reviews 37: 100–122. doi:10.1016/j.rser.2014.04.063.
  • Lalji, M. K., R. M. Sarviya, and J. L. Bhagoria. 2006. “Experimental Investigations on Packed Bed Solar Air Heater.” Current World Environment 1 (1): 151–157. doi:10.12944/cwe.6.1.22.
  • Lalji, M. K., R. M. Sarviya, and J. L. Bhagoria. 2011. “Heat Transfer Enhancement in Packed bed Solar Air Heater.” Indian Journal of Science and Technology 4 (7): 747–749. doi:10.17485/ijst/2011/v4i7/30104.
  • Lane, George A. 1983. “Phase Change Materials: Introduction.” In Solar Heat Storage: Latent Heat Materials, Volume II: Technology, edited by George A. Lane, and George A. Lane, 3–4. Boca Raton, London, New York: Taylor & Francis Group.
  • Lanjewar, A. M., and L. Bhagoria. 2011. “Performance Analysis of W-Shaped rib Roughened Solar Air Heater.” Journal of Renewable and Sustainable Energy 3: 043110: 1–11. doi:10.1063/1.3595740.
  • Lanjewar, A., J. L. Bhagoria, and R. M. Sarviya. 2011. “Heat Transfer and Friction in Solar Air Heater Duct with W-Shaped Rib Roughness on Absorber Plate.” Energy 36 (7): 4531–4541. doi:10.1016/j.energy.2011.03.054.
  • Lu, G., and X. Zhai. 2018. “International Journal of Heat and Mass Transfer Analysis on Heat Transfer and Pressure Drop of fin-and-Oval-Tube Heat Exchangers with Tear-Drop Delta Vortex Generators.” International Journal of Heat and Mass Transfer 127: 1054–1063. doi:10.1016/j.ijheatmasstransfer.2018.07.148.
  • Luan, N. T., and N. M. Phu. 2020. “Thermohydraulic Correlations and Exergy Analysis of a Solar Air Heater Duct with Inclined Baffles.” Case Studies in Thermal Engineering 100672, doi:10.1016/j.csite.2020.100672.
  • Luo, L., F. Wen, L. Wang, B. Sundén, and S. Wang. 2017. “On the Solar Receiver Thermal Enhancement by Using the Dimple Combined with Delta Winglet Vortex Generator.” Applied Thermal Engineering 111: 586–598. doi:10.1016/j.applthermaleng.2016.09.096.
  • Madhlopa, A., S. A. Jones, and J. D. Kalenga Saka. 2002. “A Solar Air Heater with Composite-Absorber Systems for Food Dehydration.” Renewable Energy 27 (1): 27–37. doi:10.1016/S0960-1481(01)00174-4.
  • Mahdi, J. M., S. Lohrasbi, and E. C. Nsofor. 2019. “Hybrid Heat Transfer Enhancement for Latent-Heat Thermal Energy Storage Systems: A Review.” International Journal of Heat and Mass Transfer 137: 630–649. doi:10.1016/j.ijheatmasstransfer.2019.03.111.
  • Mahmood, A. J. 2017. “Experimental Study of a Solar Air Heater with a New Arrangement of Transverse Longitudinal Baffles.” Journal of Solar Energy Engineering, Transactions of the ASME 139 (3), doi:10.1115/1.4035756.
  • Mahmood, A. J., L. B. Y. Aldabbagh, and F. Egelioglu. 2015. “Investigation of Single and Double Pass Solar Air Heater with Transverse Fins and a Package Wire Mesh Layer.” Energy Conversion and Management 89: 599–607. doi:10.1016/j.enconman.2014.10.028.
  • Mandal, S., and S. K. Ghosh. 2020. “Experimental Investigation of the Performance of a Double Pass Solar Water Heater with Reflector.” Renewable Energy 149: 631–640. doi:10.1016/j.renene.2019.11.160.
  • Manjunath, M. S., K. V. Karanth, and N. Y. Sharma. 2017. “Numerical Analysis of the Influence of Spherical Turbulence Generators on Heat Transfer Enhancement of Flat Plate Solar Air Heater.” Energy 121: 616–630. doi:10.1016/j.energy.2017.01.032.
  • Marín, J. M., B. Zalba, L. F. Cabeza, and H. Mehling. 2005. “Improvement of a Thermal Energy Storage Using Plates with Paraffin-Graphite Composite.” International Journal of Heat and Mass Transfer 48 (12): 2561–2570. doi:10.1016/j.ijheatmasstransfer.2004.11.027.
  • Misra, R., J. Singh, S. K. Jain, S. Faujdar, M. Agrawal, A. Mishra, and P. K. Goyal. 2020. “Prediction of Behavior of Triangular Solar Air Heater Duct Using V-Down Rib with Multiple Gaps and Turbulence Promoters as Artificial Roughness: A CFD Analysis.” International Journal of Heat and Mass Transfer 162: 120376. doi:10.1016/j.ijheatmasstransfer.2020.120376.
  • Mohammadi, K., and M. Sabzpooshani. 2013. “Comprehensive Performance Evaluation and Parametric Studies of Single Pass Solar Air Heater with Fins and Baffles Attached Over the Absorber Plate.” Energy 57: 741–750. doi:10.1016/j.energy.2013.05.016.
  • Mohanraj, M., and P. Chandrasekar. 2008. “Drying of Copra in a Forced Convection Solar Drier.” Biosystems Engineering 99 (4): 604–607. doi:10.1016/j.biosystemseng.2007.12.004.
  • Momin, A. E. 2002. “Heat Transfer and Friction in Solar Air Heater Duct with V-Shaped rib Roughness on Absorber Plate.” International Journal of Heat and Mass Transfer 45: 3383–3396. doi:10.1016/S0017-9310(02)00046-7.
  • Morrison, D. J., and S. I. Abdel-Khalik. 1978. “Effects of Phase-Change Energy Storage on the Performance of Air-Based and Liquid-Based Solar Heating Systems.” Solar Energy 20 (1): 57–67. doi:10.1016/0038-092X(78)90141-X.
  • Moummi, N., S. Youcef-Ali, A. Moummi, and J. Y. Desmons. 2004. “Energy Analysis of a Solar Air Collector with Rows of Fins.” Renewable Energy 29 (13): 2053–2064. doi:10.1016/j.renene.2003.11.006.
  • Mu, L., X. Xu, T. Williams, C. Debroux, R. C. Gomez, Y. H. Park, … and S. Kuravi. 2019. “Enhancing the Performance of a Single-Basin Single-Slope Solar Still by Using Fresnel Lens: Experimental Study.” Journal of Cleaner Production 239: 118094. doi:10.1016/j.jclepro.2019.118094.
  • Mund, C., S. K. Rathore, and R. K. Sahoo. 2021. “A Review of Solar Air Collectors About Various Modifications for Performance Enhancement.” Solar Energy 228 (January): 140–167. doi:10.1016/j.solener.2021.08.040.
  • Naphon, P. 2005. “Effect of Porous Media on the Performance of the Double-Pass Flat Plate Solar Air Heater.” International Communications in Heat and Mass Transfer 32 (1–2): 140–150. doi:10.1016/j.icheatmasstransfer.2004.11.001.
  • Naphon, P. 2005. “On the Performance and Entropy Generation of the Double-Pass Solar Air Heater with Longitudinal Fins.” Renewable Energy 30 (9): 1345–1357. doi:10.1016/j.renene.2004.10.014.
  • Naveenkumar, R., M. Ravichandran, V. Mohanavel, A. Karthick, L. S. R. L. Aswin, S. S. H. Priyanka, and S. P. Kumar. 2022. “Review on Phase Change Materials for Solar Energy Storage Applications.” Environmental Science and Pollution Research 29: 9491–9532. doi:10.1007/s11356-021-17152-8.
  • Nidhul, K., A. K. Yadav, S. Anish, and S. Kumar. May 2021. “Critical Review of Ribbed Solar Air Heater and Performance Evaluation of Various V-rib Configuration.” Renewable & Sustainable Energy Reviews 142: 110871. doi:10.1016/j.rser.2021.110871.
  • Noro, M., R. M. Lazzarin, and F. Busato. 2014. “Solar Cooling and Heating Plants: An Energy and Economic Analysis of Liquid Sensible vs Phase Change Material (PCM) Heat Storage.” Revue internationale Du Froid / institut international Du Froid = international Journal of Refrigeration / international institute of Refrigeration 39: 104–116. doi:10.1016/j.ijrefrig.2013.07.022.
  • Nowzari, R., L. B. Y. Aldabbagh, and F. Egelioglu. 2014. “Single and Double Pass Solar Air Heaters with Partially Perforated Cover and Packed Mesh.” Energy 73: 694–702. doi:10.1016/j.energy.2014.06.069.
  • Olivkar, P. R., V. P. Katekar, S. S. Deshmukh, and S. V. Palatkar. December 2022. “Effect of Sensible Heat Storage Materials on the Thermal Performance of Solar Air Heaters: State-of-the-art Review.” Renewable & Sustainable Energy Reviews 157: 112085. doi:10.1016/j.rser.2022.112085.
  • Omer, A. M. 2014. “Energy Use and Environmental Impacts: A General Review.” Adv. Energy Res. 17 (2009): 1–38. doi:10.1063/1.3220701.
  • Omojaro, A. P., and L. B. Y. Aldabbagh. 2010. “Experimental Performance of Single and Double Pass Solar Air Heater with Fins and Steel Wire Mesh as Absorber.” Applied Energy 87 (12): 3759–3765. doi:10.1016/j.apenergy.2010.06.020.
  • Pachori, H., T. Choudhary, and T. Sheorey. 2022. “Significance of Thermal Energy Storage Material in Solar Air Heaters.” Materials Today: Proceedings 56: 126–134. doi:10.1016/j.matpr.2021.12.516.
  • Pandey, N. K., and V. K. Bajpai. 2016. “Experimental Investigation of Heat Transfer Augmentation Using Multiple Arcs with Gap on Absorber Plate of Solar Air Heater.” Solar Energy 134: 314–326. doi:10.1016/j.solener.2016.05.007.
  • Persad, P., and S. Satcunanathan. 1983. “The Thermal Performance of the Two-Pass, Two-Glass-Cover Solar Air Heater.” Journal of Solar Energy Engineering 105 (3): 254–258. doi:10.1115/1.3266375.
  • Phu, N. M., and N. T. Luan. 2020. “A Review of Energy and Exergy Analyses of a Roughened Solar Air Heater.” Journal of Advanced Research in Fluid Mechanics 77 (2): 160–175. doi:10.37934/arfmts.77.2.160175.
  • Prakash, C., and R. P. Saini. 2018. “Heat Transfer and Friction in Rectangular Solar Air Heater Duct Having Spherical and Inclined Rib Protrusions as Roughness on Absorber Plate.” Experimental Heat Transfer, 1–19. doi:10.1080/08916152.2018.1543367.
  • Pramanik, R. N., S. S. Sahoo, R. K. Swain, T. P. Mohapatra, and A. K. Srivastava. 2017. “Performance Analysis of Double Pass Solar Air Heater with Bottom Extended Surface.” Energy Procedia 109 (November 2016): 331–337. doi:10.1016/j.egypro.2017.03.077.
  • Prasad, B. N., and G. N. Sah. 2014. “Plate Temperature and Heat Transfer Characteristics of Artificially Roughened Solar Air Heater.” Energy Procedia 62: 256–269. doi:10.1016/j.egypro.2014.12.387.
  • Prasad, B. N., and J. S. Saini. 1988. “Effect of Artificial Roughness on Heat Transfer and Friction Factor in a Solar Air Heater.” Solar Energy 41 (6): 555–560.
  • Priyam, A., and P. Chand. 2016. “Thermal and Thermohydraulic Performance of Wavy Finned Absorber Solar Air Heater.” Solar Energy 130: 250–259. doi:10.1016/j.solener.2016.02.030.
  • Priyam, A., and P. Chand. 2018. “Effect of Wavelength and Amplitude on the Performance of Wavy Finned Absorber Solar Air Heater.” Renewable Energy 119: 690–702. doi:10.1016/j.renene.2017.12.010.
  • Rai, S., P. Chand, and S. P. Sharma. 2017. “An Analytical Investigations on Thermal and Thermohydraulic Performance of Offset Finned Absorber Solar Air Heater.” Solar Energy 153: 25–40. doi:10.1016/j.solener.2017.05.039.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2019. “A Cost-Effective Method to Improve the Performance of Solar Air Heaters Using Discrete Macro-Encapsulated PCM Capsules for Drying Applications.” Applied Thermal Engineering 146: 910–920. doi:10.1016/j.applthermaleng.2018.10.055.
  • Ramani, B. M., A. Gupta, and R. Kumar. 2010. “Performance of a Double Pass Solar Air Collector.” Solar Energy 84 (11): 1929–1937. doi:10.1016/j.solener.2010.07.007.
  • Ravi, R. K., and R. P. Saini. 2016. “Experimental Investigation on Performance of a Double Pass Artificial Roughened Solar Air Heater Duct Having Roughness Elements of the Combination of Discrete Multi V Shaped and Staggered Ribs.” Energy 116: 507–516. doi:10.1016/j.energy.2016.09.138.
  • Razak, A. A., Z. A. A. Majid, W. H. Azmi, M. H. Ruslan, S. Choobchian, G. Najafi, and K. Sopian. 2016. “Review on Matrix Thermal Absorber Designs for Solar Air Collector.” Renewable & Sustainable Energy Reviews 64: 682–693. doi:10.1016/j.rser.2016.06.015.
  • Razak, A. A., Z. A. A. Majid, K. Sopian, and M. H. Ruslan. 2015. “Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design.” Malaysian J. Anal. Sci. 19 (6): 1264–1273.
  • Rhee, S. J., and D. K. Edwards. 1981. “Laminar Entrance Flow in a Flat Plate Duct with Asymmetric Suction and Heating.” Numerical Heat Transfer 4 (1): 85–100. doi:10.1080/01495728108961780.
  • Romdhane, B. S. 2007. “The Air Solar Collectors: Comparative Study, Introduction of Baffles to Favor the Heat Transfer.” Solar Energy 81 (1): 139–149. doi:10.1016/j.solener.2006.05.002.
  • Sahu, M. M., and J. L. Bhagoria. 2005. “Augmentation of Heat Transfer Coefficient by Using 90° Broken Transverse Ribs on Absorber Plate of Solar Air Heater.” Renewable Energy 30 (13): 2057–2073. doi:10.1016/j.renene.2004.10.016.
  • Sahu, M. K., M. Sharma, M. M. Matheswaran, and K. Maitra. 2019. “On the Use of Longitudinal Fins to Enhance the Performance in Rectangular Duct of Solar Air Heaters - A Review.” Journal of Solar Energy Engineering, Transactions of the ASME 141 (3), doi:10.1115/1.4042827.
  • Saini, R. P., and J. S. Saini. 1997. “Heat Transfer and Friction Factor Correlations for Artificially Roughened Ducts with Expanded Metal Mesh as Roughness Element.” International Journal of Heat and Mass Transfer 40 (4): 973–986. doi:10.1016/0017-9310(96)00019-1.
  • Saini, S. K., and R. P. Saini. 2008. “Development of Correlations for Nusselt Number and Friction Factor for Solar Air Heater with Roughened Duct Having arc-Shaped Wire as Artificial Roughness.” Solar Energy 82 (12): 1118–1130. doi:10.1016/j.solener.2008.05.010.
  • Saini, R. P., and J. Verma. 2008. “Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters.” Energy 33 (8): 1277–1287. doi:10.1016/j.energy.2008.02.017.
  • Sajawal, M., T. U. Rehman, H. M. Ali, U. Sajjad, A. Raza, and M. S. Bhatti. 2019. “Experimental Thermal Performance Analysis of Finned Tube-Phase Change Material Based Double Pass Solar Air Heater.” Case Studies in Thermal Engineering 15: 100543. doi:10.1016/j.csite.2019.100543.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2020. “Comparative Study of Novel Solar Air Heater with and Without Latent Energy Storage.” Journal of Energy Storage 32 (August): 101751. doi:10.1016/j.est.2020.101751.
  • Samdarshi, S. K., and S. C. Mullick. 1990. “Analysis of the Top Heat Loss Factor of Flat Plate Solar Collectors with Single and Double Glazing.” International Journal of Energy Research 14 (9): 975–990. doi:10.1002/er.4440140908.
  • Saravanakumar, P. T., D. Somasundaram, and M. M. Matheswaran. 2020. “Exergetic Investigation and Optimization of arc Shaped Rib Roughened Solar Air Heater Integrated with Fins and Baffles.” Applied Thermal Engineering 175: 115316. doi:10.1016/j.applthermaleng.2020.115316.
  • Saxena, A., and V. Goel. 2013. “Solar Air Heaters with Thermal Heat Storages.” Chinese Journal of Engineering 2013: 1–11. doi:10.1155/2013/190279.
  • Saxena, A., G. Srivastava, and V. Tirth. 2015. “Design and Thermal Performance Evaluation of a Novel Solar Air Heater.” Renewable Energy 77: 501–511. doi:10.1016/j.renene.2014.12.041.
  • Saxena, A., V. Tirth, and G. Srivastava. 2014. “Design and Performance Analysis of a Solar Air Heater with High Heat Storage.” Distributed Generation & Alternative Energy 29 (3): 35–55. doi:10.1080/21563306.2014.10879016.
  • Sekhar, Y. R., K. V. Sharma, and M. B. Rao. 2009. “Evaluation of Heat Loss Coefficients in Solar.” ARPN Journal of Engineering and Applied Sciences 4 (5): 15–19.
  • Sharma, A., R. Chauhan, M. Ali Kallioglu, V. Chinnasamy, and T. Singh. 2020. “A Review of Phase Change Materials (PCMs) for Thermal Storage in Solar Air Heating Systems.” Materials Today: Proceedings 44: 4357–4363. doi:10.1016/j.matpr.2020.10.560.
  • Sharma, A., R. Pitchumani, and R. Chauhan. 2022. “Solar Air Heating Systems with Latent Heat Storage - A Review of State-of-the-art.” Journal of Energy Storage 48: 104013. doi:10.1016/j.est.2022.104013.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. “Review on Thermal Energy Storage with Phase Change Materials and Applications.” Renewable & Sustainable Energy Reviews 13 (2): 318–345. doi:10.1016/j.rser.2007.10.005.
  • Sharol, A. F., A. A. Razak, Z. A. A. Majid, M. A. A. Azmi, M. A. S. M. Tarminzi, Y. H. Ming, and K. Sopian. 2022. “Effect of Thermal Energy Storage Material on the Performance of Double-Pass Solar Air Heater with Cross-Matrix Absorber.” Journal of Energy Storage 51 (February): 104494. doi:10.1016/j.est.2022.104494.
  • Shin, S., and J. S. Kwak. 2008. “Effect of Hole Shape on the Heat Transfer in a Rectangular Duct with Perforated Blockage Walls.” Journal of Mechanical Science and Technology 22 (10): 1945–1951. doi:10.1007/s12206-008-0736-7.
  • Shrivastava, V., A. Yadav, and N. Shrivastava. 2021. “Comparative Study of the Performance of Double-Pass and Single-Pass Solar Air Heater with Thermal Storage.” In Recent Advances in Mechanical Engineering. ICRAME 2020, edited by A. Kumar, A. Pal, S. S. Kachhwaha, and P. K. Jain. Singapore: Lecture Notes in Mechanical Engineering. Springer.
  • Singh, S., S. Chander, and J. S. Saini. 2011. “Heat Transfer and Friction Factor Correlations of Solar Air Heater Ducts Artificially Roughened with Discrete V-Down Ribs.” Energy 36 (8): 5053–5064. doi:10.1016/j.energy.2011.05.052.
  • Singh, S. October 2019. “Thermohydraulic Performance of Double Pass Solar Thermal Collector with Inline, Staggered and Hybrid Fin Configurations.” Journal of Energy Storage 27 (101080): 2020. doi:10.1016/j.est.2019.101080.
  • Singh, A., and S. Singh. 2017. “CFD Investigation on Roughness Pitch Variation in non-Uniform Cross-Section Transverse Rib Roughness on Nusselt Number and Friction Factor Characteristics of Solar Air Heater Duct.” Energy 128: 109–127. doi:10.1016/j.energy.2017.04.008.
  • Singh, I., and S. Singh. 2018a. “CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements.” Solar Energy 162 (July): 442–453. doi:10.1016/j.solener.2018.01.019.
  • Singh, I., and S. Singh. 2018b. “A Review of Artificial Roughness Geometries Employed in Solar Air Heaters.” Renewable & Sustainable Energy Reviews 92 (April): 405–425. doi:10.1016/j.rser.2018.04.108.
  • Singh, S., B. Singh, V. S. Hans, and R. S. Gill. 2015. “CFD (Computational Fluid Dynamics) Investigation on Nusselt Number and Friction Factor of Solar Air Heater Duct Roughened with non-Uniform Cross-Section Transverse rib.” Energy 84: 509–517. doi:10.1016/j.energy.2015.03.015.
  • Singh, A. P., V. Goel, and S. Siddhartha. 2014. “Heat Transfer and Friction Factor Correlations for Multiple arc Shape Roughness Elements on the Absorber Plate Used in Solar Air Heaters.” Experimental Thermal and Fluid Science 54: 117–126. doi:10.1016/j.expthermflusci.2014.02.004.
  • Singh Yadav, A., O. Prakash Shukla, and R. Singh Bhadoria. 2022. “Recent Advances in Modeling and Simulation Techniques Used in Analysis of Solar Air Heater Having Ribs.” Materials Today: Proceedings 62: 1375–1382. doi:10.1016/j.matpr.2021.12.242.
  • Sivarathinamoorthy, H., and G. Sureshkannan. 2021. “The Influence of Internal Heat Storage Material and Longitudinal Fins on a Double-Pass Solar Air Heater Performance.” Journal of Solar Energy Engineering, Transactions of the ASME 143 (1): 1–7. doi:10.1115/1.4047454.
  • Slama, R., M. Bouabdallah, and J. Mora. 1996. “Air Solar Collectors with Baffles: Aerodynamics, Heat Transfer and Efficiency.” RERIC International Energy Journal 18 (1): 1–18.
  • Smil, V. 1991. General Energetics, Energy In. USA: John Wiley & Sons.
  • Sudhakar, P., and M. Cheralathan. 2021. “Encapsulated PCM Based Double Pass Solar Air Heater: A Comparative Experimental Study.” Chemical Engineering Communications 208 (6): 788–800. doi:10.1080/00986445.2019.1641701.
  • Şevik, S., and M. Abuşka. 2019. “Thermal Performance of Flexible Air Duct Using a New Absorber Construction in a Solar Air Collector.” Applied Thermal Engineering 146: 123–134. doi:10.1016/j.applthermaleng.2018.09.100.
  • Tamna, S., S. Skullong, C. Thianpong, and P. Promvonge. 2014. “Heat Transfer Behaviors in a Solar Air Heater Channel with Multiple V-Baffle Vortex Generators.” Solar Energy 110: 720–735. doi:10.1016/j.solener.2014.10.020.
  • Tian, Y., and C. Y. Zhao. 2013. “A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications.” Applied Energy 104: 538–553. doi:10.1016/j.apenergy.2012.11.051.
  • Valencia, A. 2020. “Heat Transfer Enhancement Through Longitudinal Vortex Generators in Compact Heat Exchangers with Flat Tubes.” International Communications in Heat and Mass Transfer, 105035. doi:10.1016/j.icheatmasstransfer.2020.105035.
  • Varun, R. P. Saini, and S. K. Singal. 2008. “Investigation of Thermal Performance of Solar Air Heater Having Roughness Elements as a Combination of Inclined and Transverse Ribs on the Absorber Plate.” Renewable Energy 33 (6): 1398–1405. doi:10.1016/j.renene.2007.07.013.
  • Velmurugan, P., and R. Kalaivanan. 2015. “Energy and Exergy Analysis of Multi-Pass Flat Plate Solar Air Heater-an Analytical Approach.” International Journal of Green Energy 12 (8): 810–820. doi:10.1080/15435075.2014.888662.
  • Velmurugan, P., and P. Ramesh. 2011. “Evaluation of Thermal Performance of Wire Mesh Solar Air Heater.” Indian Journal of Science and Technology 4 (1): 12–14. http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf.
  • Vengadesan, E., and R. Senthil. 2020. “A Review on Recent Developments in Thermal Performance Enhancement Methods of Flat Plate Solar Air Collector.” Renewable & Sustainable Energy Reviews 134 (August): 110315. doi:10.1016/j.rser.2020.110315.
  • Verma, S. K., and B. N. Prasad. 2000. “Investigation for the Optimal Thermohydraulic Performance of Artificially Roughened Solar Air Heaters.” Renewable Energy 20 (1): 19–36. doi:10.1016/S0960-1481(99)00081-6.
  • Verma, P., A. Saxena, and L. Varshney. 2020. “A Critical Review on Thermo-Hydraulic Performance of Wire Screen Matrix Packed Solar Air Heaters.” Distributed Generation & Alternative Energy Journal 35 (2): 75–110. doi:10.13052/dgaej2156-3306.3521.
  • Wei, M., Y. Fan, L. Luo, and G. Flamant. 2017. “Design and Optimization of Baffled Fluid Distributor for Realizing Target Flow Distribution in a Tubular Solar Receiver.” Energy 136: 126–134. doi:10.1016/j.energy.2016.04.016.
  • Xu, C., H. Zhang, and G. Fang. 2022. “Review on Thermal Conductivity Improvement of Phase Change Materials with Enhanced Additives for Thermal Energy Storage.” Journal of Energy Storage 51 (January): 104568. doi:10.1016/j.est.2022.104568.
  • Yadav, A. S., A. Agrawal, A. Sharma, S. Sharma, R. Maithani, and A. Kumar. 2022. “Augmented Artificially Roughened Solar Air Heaters.” Materials Today: Proceedings 63: 226–239. doi:10.1016/j.matpr.2022.02.548.
  • Yadav, A. S., and J. L. Bhagoria. 2014a. “A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned rib Roughness on the Absorber Plate.” International Journal of Heat and Mass Transfer 70: 1016–1039. doi:10.1016/j.ijheatmasstransfer.2013.11.074.
  • Yadav, A. S., and J. L. Bhagoria. 2014b. “A Numerical Investigation of Square Sectioned Transverse rib Roughened Solar Air Heater.” International Journal of Thermal Sciences 79: 111–131. doi:10.1016/j.ijthermalsci.2014.01.008.
  • Yadav, S., M. Kaushal, V. Goel, and S. Siddhartha. 2013. “Nusselt Number and Friction Factor Correlations for Solar Air Heater Duct Having Protrusions as Roughness Elements on Absorber Plate.” Experimental Thermal and Fluid Science 44: 34–41. doi:10.1016/j.expthermflusci.2012.05.011.
  • Yadav, S., M. Kaushal, V. Goel, and S. Siddhartha. 2014. “Exergetic Performance Evaluation of Solar Air Heater Having arc Shape Oriented Protrusions as Roughness Element.” Solar Energy 105: 181–189. doi:10.1016/j.solener.2014.04.001.
  • Yang, M., X. Yang, X. Li, Z. Wang, and P. Wang. 2014. “Design and Optimization of a Solar Air Heater with Offset Strip Fin Absorber Plate.” Applied Energy 113: 1349–1362. doi:10.1016/j.apenergy.2013.08.091.
  • Yeh, H. M., C. D. Ho, and C. Y. Lin. 2000. “Effect of Collector Aspect Ratio on the Collector Efficiency of Upward Type Baffled Solar Air Heaters.” Energy Conversion and Management 41 (9): 971–981. doi:10.1016/S0196-8904(99)00148-X.
  • Zhang, L., Z. Shi, B. Zhang, and J. Huang. 2020. “Silver Attached Graphene-Based Aerogel Composite Phase Change Material and the Enhancement of Thermal Conductivity.” Materials (Basel) 13 (15): 1–9. doi:10.3390/MA13153271.
  • Zhao, B., Y. Wang, C. Wang, R. Zhu, N. Sheng, C. Zhu, and Z., Rao. 2021. “Thermal Conductivity Enhancement and Shape Stabilization of Phase Change Thermal Storage Material Reinforced by Combustion Synthesized Porous Al2O3.” Journal of Energy Storage 42 (1): 103028. doi:10.1016/j.est.2021.103028.
  • Zhao, C. Y., W. Lu, and Y. Tian. 2010. “Heat Transfer Enhancement for Thermal Energy Storage Using Metal Foams Embedded Within Phase Change Materials (PCMs).” Solar Energy 84 (8): 1402–1412. doi:10.1016/j.solener.2010.04.022.
  • Zheng, X., X. Gao, Z. Huang, Z. Li, Y. Fang, and Z. Zhang. November 2020. “Form-stable Paraffin/Graphene Aerogel/Copper Foam Composite Phase Change Material for Solar Energy Conversion and Storage.” Solar Energy Materials and Solar Cells 226 (111083): 2021. doi:10.1016/j.solmat.2021.111083.
  • Zheng, N., P. Liu, F. Shan, Z. Liu, and W. Liu. 2016. “Heat Transfer Enhancement in a Novel Internally Grooved Tube by Generating Longitudinal Swirl Flows with Multi-Vortexes.” Applied Thermal Engineering 95: 421–432. doi:10.1016/j.applthermaleng.2015.11.066.
  • Zhou, F., J. Ji, W. Yuan, X. Zhao, and S. Huang. 2019. “Study on the PCM Flat-Plate Solar Collector System with Antifreeze Characteristics.” International Journal of Heat and Mass Transfer 129: 357–366. doi:10.1016/j.ijheatmasstransfer.2018.09.114.
  • Zhou, Z., Z. Zhang, J. Zuo, K. Huang, and L. Zhang. 2015. “Phase Change Materials for Solar Thermal Energy Storage in Residential Buildings in Cold Climate.” Renewable & Sustainable Energy Reviews 48: 692–703. doi:10.1016/j.rser.2015.04.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.