2,234
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Optimisation techniques for solar drying systems: a review on modelling, simulation, and financial assessment approaches

ORCID Icon, &
Pages 182-208 | Received 04 Aug 2022, Accepted 06 Feb 2023, Published online: 10 Mar 2023

References

  • Abubakar, S., F. O. Anafi, M. U. Kaisan, S. Narayan, S. Umar, and U. A. Umar. 2020. “Comparative Analyses of Experimental and Simulated Performance of a Mixed-Mode Solar Dryer.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (7): 1393–1402. doi:10.1177/0954406219893394.
  • Aghbashlo, M., J. Müller, H. Mobli, A. Madadlou, and S. Rafiee. 2015. “Modeling and Simulation of Deep-Bed Solar Greenhouse Drying of Chamomile Flowers.” Drying Technology 33 (6): 684–695. doi:10.1080/07373937.2014.981278.
  • Akowuah, J. O., A. Bart-plange, and K. A. Dzisi. 2021. “Thin Layer Mathematical Modelling of White Maize in a Mobile Solar-Biomass Hybrid Dryer.” Research in Agricultural Engineering 2021 (no. 2): 74–83. doi:10.17221/56/2020-RAE..
  • Al-Amri, A. M., M. A. Ismail, Y. A. Al Hassan, and E. A. Almuhanna. 2021. “Effect of Solar Drying on I: Some Physico-Chemical Properties of Fruits of two Date Palm (Phoenix Dactylifera L.) Varieties.” Solar Energy 218: 425–434. doi:10.1016/j.solener.2021.02.023.
  • Álvarez-sánchez, F., J. Flores-prieto, and O. García-valladares. 2021. “Annual Thermal Performance of an Industrial Hybrid Direct– Indirect Solar air Heating System for Drying Applications in Morelos-México.” Energies 14 (17), doi:10.3390/en14175417.
  • Amouiri, R., and A. Belhamri. 2022. “CFD Investigations on the Behavior of a Solar Dryer Used for Medicinal Herbs Dehydration Under Climatic Conditions of Constantine, Algeria.” Materials Today: Proceedings 51: 2123–2130. doi:10.1016/j.matpr.2021.12.475.
  • Arunsandeep, G., A. Lingayat, V. P. Chandramohan, V. R. K. Raju, and K. S. Reddy. 2018. “A Numerical Model for Drying of Spherical Object in an Indirect Type Solar Dryer and Estimating the Drying Time at Different Moisture Level and air Temperature.” International Journal of Green Energy 15 (3): 189–200. doi:10.1080/15435075.2018.1433181.
  • Baibhaw, K., G. L. Szepesi, and Z. Szamosi. 2021. “Design and Development of Natural Convective Solar Dryer.” Multidiszciplináris Tudományok 11 (4): 144–150. doi:10.35925/j.multi.2021.4.18.
  • Barnwal, P., and G. N. Tiwari. 2008. “Grape Drying by Using Hybrid Photovoltaic-Thermal (PV/T) Greenhouse Dryer: An Experimental Study.” Solar Energy 82 (12): 1131–1144. doi:10.1016/j.solener.2008.05.012.
  • Bartzanas, T., T. Boulard, and C. Kittas. 2004. “Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse.” Biosystems Engineering 88 (4): 479–490. doi:10.1016/j.biosystemseng.2003.10.006.
  • Benhamza, A., A. Boubekri, A. Atia, T. Hadibi, and M. Arıcı. 2021. “Drying Uniformity Analysis of an Indirect Solar Dryer Based on Computational Fluid Dynamics and Image Processing.” Sustainable Energy Technologies and Assessments 47 (June): 101466. doi:10.1016/j.seta.2021.101466.
  • Bennamoun, L., and A. Belhamri. 2003. “Design and Simulation of a Solar Dryer for Agriculture Products.” Journal of Food Engineering 59 (no. 2–3): 259–266. doi:10.1016/S0260-8774(02)00466-1.
  • Boran, S. 2006. “The use of Taguchi Method for the Optimization of Bakers Yeast Drying.pdf.” Proceedings of 5th International Symposium on Intelligent Manufacturing Systems (no. December 2015).
  • Capossio, J. P., Fabani MP, Reyes-Urrutia A, Torres-Sciancalepore R, Deng Y, Baeyens J, Rodriguez R, et al. 2022. “Sustainable Solar Drying of Brewer’s Spent Grains: A Comparison with Conventional Electric Convective Drying.” Processes 10 (no. 2), doi:10.3390/pr10020339.
  • Chauhan, P. S., A. Kumar, and C. Nuntadusit. 2018. “Thermo-Environomical and Drying Kinetics of Bitter Gourd Flakes Drying Under North Wall Insulated Greenhouse Dryer.” Solar Energy 162 (no. 2018): 205–216. doi:10.1016/j.solener.2018.01.023.
  • Chavan, A., and B. Thorat. 2022. “Techno-economic Comparison of Selected Solar Dryers: A Case Study.” Drying Technology 40: 2105–2115. doi:10.1080/07373937.2021.1919141.
  • Chavan, A., V. Vitankar, A. Mujumdar, and B. Thorat. 2021a. “Natural Convection and Direct Type (NCDT) Solar Dryers: A Review.” Drying Technology 39 (0): 1969–1990. doi:10.1080/07373937.2020.1753065.
  • Chavan, A., V. Vitankar, N. Shinde, and B. Thorat. 2021b. “CFD Simulation of Solar Grain Dryer.” Drying Technology 39 (8): 1101–1113. doi:10.1080/07373937.2020.1863422.
  • Chavan, B. R., A. Yakupitiyage, and S. Kumar. 2008. “Mathematical Modeling of Drying Characteristics of Indian Mackerel (Rastrilliger Kangurta) in Solar-Biomass Hybrid Cabinet Dryer.” Drying Technology 26 (12): 1552–1562. doi:10.1080/07373930802466872.
  • Dhalsamant, K. 2021. “Development, Validation, and Comparison of FE Modeling and ANN Model for Mixed-Mode Solar Drying of Potato Cylinders.” J Food Sci. 86: 3384–3402. doi:10.1111/1750-3841.15847.
  • Dissa, A. O., J. Bathiebo, S. Kam, P. W. Savadogo, H. Desmorieux, and J. Koulidiati. 2009. “Modelling and Experimental Validation of Thin Layer Indirect Solar Drying of Mango Slices.” Renewable Energy 34 (4): 1000–1008. doi:10.1016/j.renene.2008.08.006.
  • Dong, Z., D. Yang, T. Reindl, and W. M. Walsh. 2015. “A Novel Hybrid Approach Based on Self-Organizing Maps, Support Vector Regression and Particle Swarm Optimization to Forecast Solar Irradiance.” Energy 82: 570–577. doi:10.1016/j.energy.2015.01.066.
  • Eberhart, R., and J. Kennedy. 1995. “A new Optimizer Using Particle Swarm Theory.” Proceeding of International Symposium on Micro Machine and Human Science, 39–43. doi:10.1109/MHS.1995.494215.
  • ELkhadraoui, A., S. Kooli, I. Hamdi, and A. Farhat. 2015. “Experimental Investigation and Economic Evaluation of a new Mixed-Mode Solar Greenhouse Dryer for Drying of red Pepper and Grape.” Renewable Energy 77: 1–8. doi:10.1016/j.renene.2014.11.090.
  • Erenturk, S., and K. Erenturk. 2007. “Comparison of Genetic Algorithm and Neural Network Approaches for the Drying Process of Carrot.” Journal of Food Engineering 78 (3): 905–912. doi:10.1016/j.jfoodeng.2005.11.031.
  • Fabani, M. P., J. P. Capossio, M. C. Román, W. Zhu, R. Rodriguez, and G. Mazza. 2021. “Producing non-Traditional Flour from Watermelon Rind Pomace: Artificial Neural Network (ANN) Modeling of the Drying Process.” Journal of Environmental Management 281: 111915. doi:10.1016/j.jenvman.2020.111915.
  • Fu, Y., Y. Liu, W. Wang, R. Suo, and J. Wang. 2021. “Models for Predicting Quality of Solar-Dried Shrimp (Penaeus Vannamei) During Storage Based on Protein Oxidation.” Journal of Food Quality 2021. doi:10.1155/2021/1493927.
  • Getahun, E., M. A. Delele, N. Gabbiye, S. W. Fanta, P. Demissie, and M. Vanierschot. 2021. “Importance of Integrated CFD and Product Quality Modeling of Solar Dryers for Fruits and Vegetables: A Review.” Solar Energy 220 (March): 88–110. doi:10.1016/j.solener.2021.03.049.
  • Gilago, M. C., and V. Reddy Mugi. 2022. “Energy-exergy and Environ-Economic (4E) Analysis While Drying ivy Gourd in a Passive Indirect Solar Dryer Without and with Energy Storage System and Results Comparison.” Solar Energy 240: 69–83. doi:10.1016/j.solener.2022.05.027.
  • Hadibi, T., Abdelghani B, Djamel M, Abderrahmane B, Khaled M, Anil K, Hong-Wei X, Karim A. 2022. “Energy, Environmental, Economic, and Color Analysis of geo-Exchange Energy Assisted-Insulated North Wall Solar Dryer for Onion Slices Under Relatively Cloudy and Rainy Conditions.” Solar Energy 236: 1–16. doi:10.1016/j.solener.2022.02.037.
  • Hamdi, I., S. Kooli, A. Elkhadraoui, Z. Azaizia, F. Abdelhamid, and A. Guizani. 2018. “Experimental Study and Numerical Modeling for Drying Grapes Under Solar Greenhouse.” Renewable Energy 127: 936–946. doi:10.1016/j.renene.2018.05.027.
  • Hawlader, M. N. A., S. K. Chou, K. A. Jahangeer, S. M. A. Rahman, and K. W. Eugene Lau. 2003. “Solar-assisted Heat-Pump Dryer and Water Heater.” Applied Energy 74 (no. 1–2): 185–193. doi:10.1016/S0306-2619(02)00145-9.
  • Hossain, M. A., and B. K. Bala. 2007. “Drying of hot Chilli Using Solar Tunnel Drier.” Solar Energy 81 (1): 85–92. doi:10.1016/j.solener.2006.06.008.
  • Hussein, J. B., M. O. Oke, O. O. Abiona, and Q. Adebayo. 2021. “Optimization of Processing Parameters for Drying of Tomatoes (Solanum Lycopersicum L.var) Slices Using Taguchi Technique.” Journal of Food Processing and Preservation 45 (2): 0–2. doi:10.1111/jfpp.15149.
  • Iranmanesh, M., H. Samimi Akhijahani, and M. S. Barghi Jahromi. 2020. “CFD Modeling and Evaluation the Performance of a Solar Cabinet Dryer Equipped with Evacuated Tube Solar Collector and Thermal Storage System.” Renewable Energy 145: 1192–1213. doi:10.1016/j.renene.2019.06.038.
  • Ismail, A. F., A. S. Abd Hamid, A. Ibrahim, H. Jarimi, and K. Sopian. 2022. “Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock.” Energies 15 (3), doi:10.3390/en15030905.
  • Jain, D. 2007. “Modeling the Performance of the Reversed Absorber with Packed bed Thermal Storage Natural Convection Solar Crop Dryer.” Journal of Food Engineering 78 (2): 637–647. doi:10.1016/j.jfoodeng.2005.10.035.
  • Janjai, S., et al. 2009. “Experimental and Simulated Performance of a PV-Ventilated Solar Greenhouse Dryer for Drying of Peeled Longan and Banana.” Solar Energy 83 (9): 1550–1565. doi:10.1016/j.solener.2009.05.003.
  • Jha, A., and P. P. Tripathy. 2021. “Optimization of Process Parameters and Numerical Modeling of Heat and Mass Transfer During Simulated Solar Drying of Paddy.” Computers and Electronics in Agriculture 187: 106215. doi:10.1016/j.compag.2021.106215.
  • Joshi, M., N. Kumar, and P. Baredar. 2019a. “Optimization of Solar Dryer Using Taguchi Method.” International Journal of Recent Technology and Engineering (IJRTE) 8 (3): 3320–3326. doi:10.35940/ijrte.C5684.098319.
  • Joshi, M., N. Kumar, and P. Baredar. 2019b. “The Optimization Techniques Used in Solar Dryers, A Review.” International Journal of Mechanical and Production Engineering Research and Development 9 (4): 83–92. doi:10.24247/ijmperdaug20199.
  • Kolioak, Y., M. Radhakrishna, and A. M. K. Prasad. 2020. “Optimization of Heat Energy Based on Phase Change Materials Used in Solar Collector Using Taguchi Method.” Materials Today: Proceedings 22: 2404–2411. doi:10.1016/j.matpr.2020.03.365.
  • Kumar, B., L. Berényi, Z. Szamosi, and G. L. Szepesi. 2022. “Business Model Analysis for the Scope of Entrepreneurship in a Solar Drying Field in the European Region.” Entrepreneurship in the Raw Materials Sector, 85–92. doi:10.1201/9781003259954-9.
  • Kumar, B., L. G. Szepesi, and Z. Szamosi. 2021. “Drying Behaviour Observations for Wood Chips of Grade EN14961.” Multidiszciplináris Tudományok 11 (4): 151–156. doi:10.35925/j.multi.2021.4.19.
  • Lamrani, B., and A. Draoui. 2020. “Modelling and Simulation of a Hybrid Solar-Electrical Dryer of Wood Integrated with Latent Heat Thermal Energy Storage System.” Thermal Science and Engineering Progress 18: 100545. doi:10.1016/j.tsep.2020.100545.
  • Lamrani, B., A. Khouya, and A. Draoui. 2019. “Energy and Environmental Analysis of an Indirect Hybrid Solar Dryer of Wood Using TRNSYS Software.” Solar Energy 183 (March): 132–145. doi:10.1016/j.solener.2019.03.014.
  • Larson, M. G. 2008. “Analysis of Variance.” Circulation 117 (1): 115–121. doi:10.1161/CIRCULATIONAHA.107.654335.
  • Madamba, P. S. 1997. “Optimization of the Drying Process: An Application to the Drying of Garlic.” Drying Technology 15 (1): 117–136. doi:10.1080/07373939708917221.
  • Mahapatra, A. K., L. Imre, J. Barcza, A. Bitaif, and I. Farkast. 1994. “Simulation of a Directly Irradiated Solar Dryer with Integrated Collector.” International Journal of Ambient Energy 15 (4): 195–204. doi:10.1080/01430750.1994.9675654.
  • Majdi, H., and J. A. Esfahani. 2019. “Energy and Drying Time Optimization of Convective Drying: Taguchi and LBM Methods.” Drying Technology 37 (6): 722–734. doi:10.1080/07373937.2018.1458036.
  • Mellalou, A., W. Riad, S. K. Hnawi, A. Tchenka, A. Bacaoui, and A. Outzourhit. 2021. “Experimental and CFD Investigation of a Modified Uneven-Span Greenhouse Solar Dryer in No-Load Conditions Under Natural Convection Mode.” International Journal of Photoenergy 2021. doi:10.1155/2021/9918166.
  • Midilli, A., and H. Kucuk. 2003. “Mathematical Modeling of Thin Layer Drying of Pistachio by Using Solar Energy.” Energy Conversion and Management 44 (7): 1111–1122. doi:10.1016/S0196-8904(02)00099-7.
  • Mishra, L., A. Sinha, and R. Gupta. 2021. “Energy, Exergy, Economic and Environmental (4E) Analysis of Greenhouse Dryer in no-Load Condition.” Sustainable Energy Technologies and Assessments 45 (March): 101186. doi:10.1016/j.seta.2021.101186.
  • Mithun, B. D., M. S. Hoque, M. L. Van Brakel, M. M. Hasan, S. Akter, and M. R. Islam. 2021. “Comparative Quality Assessment of Traditional vs. Improved Dried Bombay Duck (Harpodon Nehereus) Under Different Storage Conditions: Solar Chimney Dryer a low-Cost Improved Approach for Nutritional Dried Fish.” Food Science & Nutrition 9: 6794–6805. doi:10.1002/fsn3.2631.
  • Mustapha, A. N., Y. Zhang, Z. Zhang, Y. Ding, Q. Yuan, and Y. Li. 2021. “Taguchi and ANOVA Analysis for the Optimization of the Microencapsulation of a Volatile Phase Change Material.” Journal of Materials Research and Technology 11: 667–680. doi:10.1016/j.jmrt.2021.01.025.
  • Mutabilwa, P., and K. N. Nwaigwe. 2020. “Design, Construction and CFD Modeling of a Banana-Solar Dryer With Double Pass Solar Air Collector.” doi:10.1115/ES2020-1614.
  • Muthee, A. 2021. “The Basics of Genetic Algorithms in Machine Learning,” 2021. [Online]. Accessed 21 September 2021. https://www.section.io/engineering-education/the-basics-of-genetic-algorithms-in-ml/.
  • Nabnean, S., and P. Nimnuan. 2020. “Experimental Performance of Direct Forced Convection Household Solar Dryer for Drying Banana.” Case Studies in Thermal Engineering 22: 100787. doi:10.1016/j.csite.2020.100787.
  • Ndukwu, M. C., Mathew I, Pomise E, Christopher U A, Inemesit E E, Akuwueke L, Linus O, et al. 2022. “Assessment of eco-Thermal Sustainability Potential of a Cluster of low-Cost Solar Dryer Designs Based on Exergetic Sustainability Indicators and Earned Carbon Credit.” Cleaner Energy Systems 3 (October): 100027. doi:10.1016/j.cles.2022.100027.
  • Pirasteh, G., R. Saidur, S. M. A. Rahman, and N. A. Rahim. 2014. “A Review on Development of Solar Drying Applications.” Renewable and Sustainable Energy Reviews 31: 133–148. doi:10.1016/j.rser.2013.11.052.
  • Prakash, O., and A. Kumar. 2013. “Historical Review and Recent Trends in Solar Drying Systems.” International Journal of Green Energy 10 (7): 690–738. doi:10.1080/15435075.2012.727113.
  • Prakash, O., and A. Kumar. 2014a. “ANFIS Modelling of a Natural Convection Greenhouse Drying System for Jaggery: An Experimental Validation.” International Journal of Sustainable Energy 33 (2): 316–335. doi:10.1080/14786451.2012.724070.
  • Prakash, O., and A. Kumar. 2014. “Environomical Analysis and Mathematical Modelling for Tomato Flakes Drying in a Modified Greenhouse Dryer Under Active Mode.” International Journal of Food Engineering 10 (4): 669–681. doi:10.1515/ijfe-2013-0063.
  • Prakash, O., and A. Kumar. 2020. Solar Drying Systems. 1st. Oxfordshire: CRC Press.
  • Rahman, M. M., A. G. M. M. Billah, S. Mekhilef, and S. Rahman. 2014. “Application of Genetic Algorithm for Optimization of Solar Powered Drying.” IEEE Innov. Smart Grid Technol. – Asia, ISGT ASIA 2014, pp. 647–651. doi:10.1109/ISGT-Asia.2014.6873868.
  • Rahman, M. M., A. G. M. B. Mustayen, S. Mekhilef, and R. Saidur. 2015. “The Optimization of Solar Drying of Grain by Using a Genetic Algorithm.” International Journal of Green Energy 12 (12): 1222–1231. doi:10.1080/15435075.2014.890106.
  • Reddy Mugi, V., and V. P. Chandramohan. 2021. “Energy, Exergy and Economic Analysis of an Indirect Type Solar Dryer Using Green Chilli: A Comparative Assessment of Forced and Natural Convection.” Thermal Science and Engineering Progress 24: 100950. doi:10.1016/j.tsep.2021.100950.
  • Reuss, M., et al. 1997. “Modelling and Experimental Investigation of a Pilot Plant for Solar Wood Drying.” Solar Energy 59 (no. 4-6): 259–270. doi:10.1016/S0038-092X(97)00013-3.
  • Salvatierra-Rojas, A., I. Ramaj, S. Romuli, and J. Müller. 2021. “CFD-simulink Modeling of the Inflatable Solar Dryer for Drying Paddy Rice.” Applied Sciences 11 (7), doi:10.3390/app11073118.
  • Sanchez, P. J. 2007. “Fundamentals of Simulation Modeling.” Proceedings 2007 Winter Simulation Conference, pp. 54–62, doi:10.1109/WSC.2007.4419588.
  • Santana, J. C. C., S. A. Araújo, A. F. H. Librantz, and E. B. Tambourgi. 2010. “Optimization of Corn Malt Drying by use of a Genetic Algorithm.” Drying Technology 28 (11): 1236–1244. doi:10.1080/07373937.2010.500439.
  • Seginer, I., and M. Bux. 2006. “Modeling Solar Drying Rate of Wastewater Sludge.” Drying Technology 24 (11): 1353–1363. doi:10.1080/07373930600952362.
  • Sekyere, C. K. K., F. W. Adams, F. Davis, and F. K. Forson. 2020. “Mathematical Modelling and Validation of the Thermal Buoyancy Characteristics of a Mixed Mode Natural Convection Solar Crop Dryer with Back up Heater.” Scientific African 8: e00441. doi:10.1016/j.sciaf.2020.e00441.
  • Sharma, A., C. R. Chen, and N. Vu Lan. 2009. “Solar-energy Drying Systems: A Review.” Renewable and Sustainable Energy Reviews 13 (no. 6–7): 1185–1210. doi:10.1016/j.rser.2008.08.015.
  • Shrivastava, A., M. K. Gaur, and P. Singh. 2022, January. “Mango Leather (Aam Papad) Drying in Hybrid Greenhouse Solar Dryer with Evacuated Tube Collector and Finned Drying Tray: Drying Behavior and Economic Analysis.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18. doi:10.1080/15567036.2022.2029974.
  • Shrivastava, V., and A. Kumar. Apr. 2017. “Embodied Energy Analysis of the Indirect Solar Drying Unit.” International Journal of Ambient Energy 38 (3): 280–285. doi:10.1080/01430750.2015.1092471.
  • Siddhartha, N. Sharma, and Varun. 2012. “A Particle Swarm Optimization Algorithm for Optimization of Thermal Performance of a Smooth Flat Plate Solar air Heater.” Energy 38 (1): 406–413. doi:10.1016/j.energy.2011.11.026.
  • Singh, P., and M. K. Gaur. 2021. “Sustainability Assessment of Hybrid Active Greenhouse Solar Dryer Integrated with Evacuated Solar Collector.” Current Research in Food Science 4: 684–691. doi:10.1016/j.crfs.2021.09.011.
  • Singh, S., R. S. Gill, V. S. Hans, and M. Singh. 2021. “A Novel Active-Mode Indirect Solar Dryer for Agricultural Products: Experimental Evaluation and Economic Feasibility.” Energy 222: 119956. doi:10.1016/j.energy.2021.119956.
  • Singh Chauhan, P., A. Kumar, and P. Tekasakul. 2015. “Applications of Software in Solar Drying Systems: A Review.” Renewable and Sustainable Energy Reviews 51: 1326–1337. doi:10.1016/j.rser.2015.07.025.
  • Tegenaw, P. D., M. G. Gebrehiwot, and M. Vanierschot. 2019. “On the Comparison Between Computational Fluid Dynamics (CFD) and Lumped Capacitance Modeling for the Simulation of Transient Heat Transfer in Solar Dryers.” Solar Energy 184 (no. 2019): 417–425. doi:10.1016/j.solener.2019.04.024.
  • Templalexis, Giorni P, Lentzou D, Sabrina M , Georgios X , Mesisca S, Tsitsigiannis D I, Battilani P, et al. 2021. “Environmental Conditions Affecting Ochratoxin A During Solar Drying of Grapes: The Case of Tunnel and Open Air-Drying.” Toxins 13 (6), doi:10.3390/toxins13060400.
  • Tiwari, S., G. N. Tiwari, and I. M. Al-Helal. 2016. “Performance Analysis of Photovoltaic-Thermal (PVT) Mixed Mode Greenhouse Solar Dryer.” Solar Energy 133: 421–428. doi:10.1016/j.solener.2016.04.033.
  • Tzempelikos, D. A., D. Mitrakos, A. P. Vouros, A. V. Bardakas, A. E. Filios, and D. P. Margaris. 2015. “Numerical Modeling of Heat and Mass Transfer During Convective Drying of Cylindrical Quince Slices.” Journal of Food Engineering 156: 10–21. doi:10.1016/j.jfoodeng.2015.01.017.
  • Wang, D., and D. Fon. 2005. “Applications of MATLAB-Based Software to Drying Simulation.” Mechatronics, 1–17. http://140.112.183.23/.
  • Wang, D., D. Tan, and L. Liu. 2018. “Particle Swarm Optimization Algorithm: An Overview.” Soft Computing 22 (2): 387–408. doi:10.1007/s00500-016-2474-6.
  • Xie, Z., Y. Gong, C. Ye, Y. Yao, and Y. Liu. 2021. “Numerical Analysis and Optimization of Solar-Assited Heat Pump Drying System with Waste Heat Recovery Based on Trnsys.” Processes 9 (7), doi:10.3390/pr9071118.
  • Zachariah, A. M., and Richu Taher Maatallah. 2021. “Environmental and Economic Analysis of a Photovoltaic Assisted Mixed Mode Solar Dryer with Thermal Energy Storage and Exhaust air Recirculation.” International Journal of Energy Research 45: 1879–1891. doi:10.1002/er.5868.