788
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy, cost and emission saving potential of demand response and peak power limiting in the German district heating system

ORCID Icon, , , , , , & show all
Pages 1092-1127 | Received 30 Jan 2023, Accepted 18 Aug 2023, Published online: 31 Aug 2023

References

  • Achermann, M., and G. Zweifel. 2003. RADTEST – Radiant Heating and Cooling Test Cases. A Report of Task 22. In IEA. IEA. https://task22.iea-shc.org/Data/Sites/1/publications/RADTEST_final.pdf.
  • Ala-kotila, P., T. Vainio, and J. Heinonen. 2020. “Demand Response in District Heating Market—Results of the Field Tests in Student Apartment Buildings.” Smart Cities 3 (2): 157–171. https://doi.org/10.3390/smartcities3020009.
  • Albadi, M. H., and E. El-Saadany. 2008. “A Summary of Demand Response in Electricity Markets.” Electric Power Systems Research 78 (11): 1989–1996. https://doi.org/10.1016/j.epsr.2008.04.002.
  • Alimohammadisagvand, B. 2016. “Cost-optimal Thermal Energy Storage System for a Residential Building with Heat Pump Heating and Demand Response Control.” Applied Energy 174: 275–287. https://doi.org/10.1016/j.apenergy.2016.04.013.
  • Alimohammadisagvand, B. 2017. “Influence of Energy Demand Response Actions on Thermal Comfort and Energy Cost in Electrically Heated Residential Houses.” Indoor and Built Environment 26 (3): 298–316. https://doi.org/10.1177/1420326X15608514.
  • Alimohammadisagvand, B. 2018. “Comparison of Four Rule-Based Demand Response Control Algorithms in an Electrically and Heat Pump-Heated Residential Building.” Applied Energy 209: 167–179. https://doi.org/10.1016/j.apenergy.2017.10.088.
  • Arabzadeh, V. 2018. “A Novel Cost-Optimizing Demand Response Control for a Heat Pump Heated Residential Building.” Building Simulation 11 (3): 533–547. https://doi.org/10.1007/s12273-017-0425-5.
  • Bertelsen, N., B. Mathiesen, S. R. Djorup, N. C. A. Schneider, S. Paardekooper, L. Sánchez García, J. Z. Thellufsen, J. Kapatanakis, L. Angelino, and J. Kiruja. 2021. Integrating Low-Temperature Renewables in District Energy Systems: Guidelines for Policy Makers. International Renewable Energy Agency. In Aalborg University. https://vbn.aau.dk/ws/portalfiles/portal/406326231/Integrating_low_temperature_renewables_in_district_energy_systems_Guidelines_for_policymakers_2021.pdf.
  • BMU (Federal Ministry for the Environment, N. C. and N. S. 2020. Gesetz zur Einsparung von Energie und zur Nutzung erneuerbarer Energien zur Wärme-und Kälteerzeugung in Gebäuden*(Gebäudeenergiegesetz - GEG)- Anlage 9 (zu § 85 Absatz 6)-Umrechnung in Treibhausgasemissionen. (Act on the Saving of Energy and the Use of Renewable Energies for Heating and Cooling in Buildings* (Building Energy Act - GEG)-Annex 9 (to § 85 18 Science and Technology for the Built Environment paragraph 6)-Conversion into greenhouse gas emissions). In Gebäudeenergiegesetz - GEG (Anlage 9 (zu § 85 Absatz 6)). https://www.gesetze-im-internet.de/geg/anlage_9.html.
  • Bring, A., P. Sahlin, and M. Vuolle. 1999. Models for Building Indoor Climate and Energy Simulation. A Report of IEA Task 22. IEA.
  • Cai, H., S. You, and J. Wu. 2020. “Agent-based Distributed Demand Response in District Heating Systems.” Applied Energy 262: 114403. https://doi.org/10.1016/j.apenergy.2019.114403.
  • Christidis, A. C. 2019. Thermische Speicher zur Optimierung des Betriebs von Heizkraftwerken in der Fernwärmeversorgung [Thermal storage for the Optimisation of The Operation of Combined Heat and Power Plants in District Heating Applications].
  • Connolly, D., H. Lund, B. v Mathiesen, S. Werner, B. Möller, U. Persson, T. Boermans, D. Trier, P. A. Østergaard, and S. Nielsen. 2014. “Heat Roadmap Europe: Combining District Heating with Heat Savings to Decarbonise the EU Energy System.” Energy Policy 65: 475–489. https://doi.org/10.1016/j.enpol.2013.10.035.
  • Delmastro, C., F. Briens, M. Husek, and R. Martinez-Gordon. 2022. District heating. District Heating. https://www.iea.org/reports/district-heating.
  • Deutschen Wetterdienst, (DWD). 2017a. Ortsgenaue Testreferenzjahre von Deutschland für mittlere, extreme und zukünftige Witterungsverhältnisse. Deutschen Wetterdienst (DWD). https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf?__blob=publicationFile&v=3.
  • Deutschen Wetterdienst, (DWD). 2017b. Ortsgenaue Testreferenzjahre von Deutschland für mittlere und extreme Witterungsverhältnisse. In Deutscher Wetterdienst (DWD). Deutscher Wetterdienst (DWD). https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-projektbericht.pdf?__blob=publicationFile&v=3.
  • Dominković, D. F., M. Wahlroos, S. Syri, and A. S. Pedersen. 2018. “Influence of Different Technologies on Dynamic Pricing in District Heating Systems: Comparative Case Studies.” Energy (Oxford) 153: 136–148. https://doi.org/10.1016/j.energy.2018.04.028.
  • Eissa, M. M. 2011. “Demand Side Management Program Evaluation Based on Industrial and Commercial Field Data.” Energy Policy 39 (10): 5961–5969. https://doi.org/10.1016/j.enpol.2011.06.057.
  • EQUA. 2010. “Validation of IDA Indoor Climate and Energy 4.0 with Respect to CEN Standards EN 15255-2007 and EN 15265-2007.” In EQUA Simulation AB. EQUa Simulation AB.
  • Eseye, A. T., M. Lehtonen, T. Tukia, S. Uimonen, and R. J. Millar. 2019. Exploiting Flexibility of Renewable Energy Integrated Buildings for Optimal Day-ahead and Real-time Power Bidding Considering Batteries and EVs as Demand Response Resources.
  • European Commission. 2021. “Fit for 55”: delivering the EU’s 2030 Climate Target on the way to climate neutrality. In European Commission. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550.
  • Forrest, J., and R. Lougee-Heimer. 2005. CBC User Guide. https://pubsonline.informs.org/doi/10.1287educ.1053.0020.
  • Guelpa, E., and V. Verda. 2021. “Demand Response and Other Demand Side Management Techniques for District Heating: A Review.” Energy (Oxford) 219: 119440. https://doi.org/10.1016/j.energy.2020.119440.
  • Hamilton, I., H. Kennard, O. Rapf, J. Kockat, and S. Zuhaib. 2020. The Global Status Report for Buildings and Construction. United Nations. https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf.
  • Henrikkson, J. 2018. Investigation of the Improvement Potential of Heat Load Forecasts in BoFiT. Stockholm: Royal Institute of Technology.
  • Hootman, T. 2012. “Net Zero Energy Design: A Guide for Commercial Architecture. John Wiley & Sons.” Incorporated.
  • HRE4. 2017. Heating and Cooling: Facts and Figures. https://www.euroheat.org/wp-content/uploads/2017/07/29882_Brochure_Heating-and-Cooling_web-1.pdf.
  • IEA. 2019. How Can District Heating Help Decarbonise the Heat Sector by 2024? https://www.iea.org/articles/how-can-district-heating-help-decarbonise-the-heat-sector-by-2024.
  • IEA. 2020. Tracking Buildings 2020. In IEA. https://www.iea.org/reports/tracking-buildings-2020.
  • Ji, H. Y., R. Baldick, and A. Novoselac. 2014. “Dynamic Demand Response Controller Based on Real-Time Retail Price for Residential Buildings.” IEEE Transactions on Smart Grid 5 (1): 121–129. https://doi.org/10.1109/TSG.2013.2264970.
  • Ju, Y., J. Jokisalo, R. Kosonen, V. Kauppi, and P. Janßen. 2021a. “Analyzing Energy Flexibility by Demand Response in a Finnish District Heated Apartment Building E3S Web of Conferences Cold climate HVAC & Energy 2021. Tallinn, Estonia.18.4.2021.
  • Ju, Y., J. Jokisalo, R. Kosonen, V. Kauppi, and P. Janßen. 2021b. “Analyzing Power and Energy Flexibilities by Demand Response in District Heated Buildings in Finland and Germany.” Science & Technology for the Built Environment 27 (10): 1–28. https://doi.org/10.1080/23744731.2021.1950434.
  • Ju, Y., J. Lindholm, M. Verbeck, J. Jokisalo, R. Kosonen, P. Janßen, Y. Li, H. Schäfers, and N. Nord. 2021. “Cost Savings and CO2 Emissions Reduction Potential in the German District Heating System with Demand Response.” Science & Technology for the Built Environment 28 (2): 1–27. https://doi.org/10.1080/23744731.2021.2018875.
  • Knudsen, M. D., and S. Petersen. 2017. “Model Predictive Control for Demand Response of Domestic hot Water Preparation in Ultra-low Temperature District Heating Systems.” Energy and Buildings 146: 55–64. https://doi.org/10.1016/j.enbuild.2017.04.023.
  • Kontu, K., J. Vimpari, P. Penttinen, and S. Junnila. 2020. “Individual Ground Source Heat Pumps : Can District Heating Compete with Real Estate Owners’ Return Expectations?” Sustainable Cities and Society 53, https://doi.org/10.1016/j.scs.2019.101982.
  • Kropf, S., and G. Zweifel. 2001. Validation of the Building Simulation Program IDA-ICE According to CEN 13791. In Hochschule Für Technik + Architektur Luzern. http://www.equaonline.com/iceuser/validation/ICE_vs_prEN%2013791.pdf.
  • Li, H., J. Song, Q. Sun, F. Wallin, and Q. Zhang. 2019. “A Dynamic Price Model Based on Levelized Cost for District Heating.” Energy, Ecology and Environment 4 (1): 15–25. https://doi.org/10.1007/s40974-019-00109-6.
  • Lu, Z., and L. Shumei. 2018. The Status Analysis and Development Outlook of the Regional Multi-Energy System (RMES). https://doi.org/10.1109/CIEEC.2018.8745736.
  • Martin, K., J. Jokisalo, I. korkeakoulu, R. Kosonen, and A. Aalto-yliopisto, & University. 2017. Demand Response of Heating and Ventilation within Educational Office Buildings. https://aalto.finna.fi/Record/aaltodoc.123456789_29149.
  • Mathiesen, B., N. Bertelsen, N. Schneider, L. Sánchez-García, S. Paardekooper, J. Z. Thellufsen, and S. R. Djorup. 2019. Towards a Decarbonised Heating and Cooling Sector in Europe: Unlocking the potential of energy efficiency and district energy. https://vbn.aau.dk/ws/portalfiles/portal/316535596/Towards_a_decarbonised_H_C_sector_in_EU_Final_Report.pdf.
  • Merkert, L., A. Haime, and S. Hohmann. 2019. “Optimal Scheduling of Combined Heat and Power Generation Units Using the Thermal Inertia of the Connected District Heating Grid as Energy Storage.” Energies (Basel) 12 (2): 266. https://doi.org/10.3390/en12020266.
  • Mikola, A. 2017. “Performance of Ventilation in Estonian Apartment Buildings.” Energy Procedia 132: 963–968. https://doi.org/10.1016/j.egypro.2017.09.681.
  • Moczko, D. 2019. District Energy in Germany. https://www.euroheat.org/knowledge-hub/district-energy-germany/.
  • Moinard, S., and G. Guyon. 1999. Empirical Validation of EDF ETNA and GENEC Test-Cell Models. A Report of Task 22. In IEA. IEA. http://www.mojo.iea-shc.org/data/sites/1/publications/Final_report.pdf.
  • Muller, T. 2018. “Demand Response Potential: Available When Needed?” Energy Policy 115: 181–198. https://doi.org/10.1016/j.enpol.2017.12.025.
  • Paiho, S., and H. Saastamoinen. 2018. “How to Develop District Heating in Finland?” In Energy Policy 122: 668–676. https://doi.org/10.1016/j.enpol.2018.08.025.
  • Peltokorpi, A., M. Talmar, K. Castrén, and J. Holmström. 2019. “Designing an Organizational System for Economically Sustainable Demand-Side Management in District Heating and Cooling.” Journal of Cleaner Production 219 (10): 433–442. https://doi.org/10.1016/j.jclepro.2019.02.106.
  • Popovski, E., A. Aydemir, T. Fleiter, D. Bellstädt, R. Büchele, and J. Steinbach. 2019. “The Role and Costs of Large-Scale Heat Pumps in Decarbonising Existing District Heating Networks – A Case Study for the City of Herten in Germany.” Energy (Oxford) 180: 918–933. https://doi.org/10.1016/j.energy.2019.05.122.
  • ProCom GmbH. 2020. BoFiT. https://procom-energy.de/en/tag/bofit/.
  • ProCom GmbH. 2021. BoFiT Optimization. https://procom-energy.de/en/products/bofit-optimization/.
  • Safdar, M., G. A. Hussain, and M. Lehtonen. 2019. Costs of Demand Response from Residential Customers’ Perspective.
  • Seppänen, O., N. Brelih, G. Goeders, and A. Litiu. 2012. Health Based Ventilation Guidelines for Europe. Existing Buildings, Building Codes, Ventilation Standards and Ventilation in Europe. In REHVA.
  • SFS EN 13779. 2007. Ventilation for non-Residential Buildings. Performance Requirements for Ventilation and Room-Conditioning Systems. Helsinki: Finnish Standards Association SFS.
  • SFS-EN 16798-1. 2019. Energy performance of buildings. Ventilation for buildings. Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting And Acoustics. https://online.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/766211.html.stx.
  • Shan, K., S. Wang, C. Yan, and F. Xiao. 2016. “Building Demand Response and Control Methods for Smart Grids: A Review.” Science & Technology for the Built Environment 22 (6): 692–704. https://doi.org/10.1080/23744731.2016.1192878.
  • Siano, P. 2014. “Demand Response and Smart Grids—A Survey.” Renewable & Sustainable Energy Reviews 30: 461–478. https://doi.org/10.1016/j.rser.2013.10.022.
  • Suhonen, J., J. Jokisalo, R. Kosonen, V. Kauppi, Y. Ju, and P. Janßen. 2020. “Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany.” Energies 13: 23. https://doi.org/10.3390/en13236296.
  • Sun, Z., L. Li, and F. Dababneh. 2016. “Plant-level Electricity Demand Response for Combined Manufacturing System and Heating, Venting, and air-Conditioning (HVAC) System.” Journal of Cleaner Production 135: 1650–1657. https://doi.org/10.1016/j.jclepro.2015.12.098.
  • Tillman, P. 2017. Entwicklung einer Einsatzoptimierung von W€armeerzeugern zur wirtschaftlichen Bewertung unterschiedlicher Integrationskonzepte tiefer Geothermie in einem Nahw€armenetz [Development of an optimization for the use of heat generation units for the economic evaluation of different integration concepts of deep geothermal energy in a local heating network].
  • Vand, B. 2020. “Demand Response Potential of District Heating and Ventilation in an Educational Office Building.” Science and Technology for the Built Environment 26 (3): 304–319. https://doi.org/10.1080/23744731.2019.1693207.
  • Vogt, M., F. Marten, and M. Braun. 2018. “A Survey and Statistical Analysis of Smart Grid co-Simulations.” Applied Energy 222: 67–78. https://doi.org/10.1016/j.apenergy.2018.03.123.
  • Werner, S. 2017. “District Heating and Cooling in Sweden.” Energy (Oxford) 126: 419–429. https://doi.org/10.1016/j.energy.2017.03.052.
  • Yin, R., E. C. Kara, Y. Li, N. DeForest, K. Wang, T. Yong, and M. Stadler. 2016. “Quantifying Flexibility of Commercial and Residential Loads for Demand Response Using Setpoint Changes.” Applied Energy 177: 149–164. https://doi.org/10.1016/j.apenergy.2016.05.090.
  • Yuan, X., L. Lindroos, J. Jokisalo, R. Kosonen, Y. Pan, and H. Jin. 2021. “Demand Response Potential of District Heating in a Swimming Hall in Finland [Article].” Energy and Buildings 248: 111149. https://doi.org/10.1016/j.enbuild.2021.111149.