573
Views
47
CrossRef citations to date
0
Altmetric
Review

Sulfur and sulfur nanoparticles as potential antimicrobials: from traditional medicine to nanomedicine

, &
Pages 969-978 | Received 16 May 2016, Accepted 03 Aug 2016, Published online: 19 Aug 2016

References

  • Kumar A, Jee M. Nanotechnology: a review of applications and issues. IJITEE. 2013;3(4):89–92.
  • Madaan T, Pandey S, Talegaonkar S. Nanotechnology: a smart drug delivery tool in modern healthcare. J Chem Pharma Res. 2015;7(6):257–264.
  • Rai M, Ingle AP, Yadav A, et al. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. 2015;19:1–24.
  • Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol. 2013;4:165–172.
  • Nikalje AP. Nanotechnology and its applications in medicine. Med Chem. 2015;5:081–089.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.
  • Baskar S, Pragati P, Chandrababu K. Anti-microbial studies using sulphur nanoparticles on dandruff causing Malassezia Yeasts. In: Proceedings of the World Congress on Engineering, 2015 Jul 1–3, London: IAENG Publications.
  • Kenawi MZ, Morsy TA, Abdalla KF, et al. Treatment of human scabies by sulfur and permethrin. J Egypt Soc Parasitol. 1993;23(3):691–696.
  • Keri J, Shiman M. An update on the management of acne vulgaris. CCID. 2009;2:105–110.
  • Parcell S. Sulfur in human nutrition and applications in medicine. Altern Med Rev. 2002;7(1):22–44.
  • Jha DK, Debata L. A case of vitiligo treated by sulphur. Ind J Res Homoe. 2009;3(3):34–40.
  • Lin AN, Reimer RJ, Carter DM. Sulfur revisited. J Am Acad Dermatol. 1988;18(3):553–558.
  • Gupta AK, Nicol K. The use of sulfur in dermatology. J Drugs Dermatol. 2004;3(4):427–431.
  • Emsely J. Nature’s building blocks: sulfur. New York (NY): Oxford university press Inc; 2003. p. 511–520.
  • Lee ZW, Zhou J, Chen CS, et al. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS ONE. 2011;6(6):e21077.
  • Duan F, Li Y, Chen L, et al. Sulfur inhibits the growth of androgen-independent prostate cancer in vivo. Oncol Lett. 2015;9(1):437–441.
  • Nishimura S, Hato M, Hyugaji S, et al. Glycomics for drug discovery: metabolic perturbation in androgen-independent prostate cancer cells induced by unnatural hexosamine mimics. Angew Chem Int Ed Engl. 2012;51(4):3386–3390.
  • Griffith CM, Woodrow JE, Seiber JN. Environmental behavior and analysis of agricultural sulfur. Pest Manag Sci. 2015;71(11):1486–1496.
  • Orton DG. Sulfur dyes. In: Venkataraman K, editor. The chemistry of synthetic dyes. New York (NY): Academic press; 1974. p. 1–34.
  • Chen H, Dong W, Ge J, et al. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep. 2013;3:1910.
  • Yong Z, Wei Z, Ping Z, et al. Novel nanosized adsorbing composite cathode materials for the next generation lithium battery. J Wuhan Univ Technol. 2007;22(2):234–239.
  • Barkauskas J, Juskenas R, Mileriene V, et al. Effect of sulfur on the synthesis and modification of carbon nanostructures. Mater Res Bull. 2007;42:1732–1739.
  • Santiago P, Carvajal E, Mendoza D, et al. Synthesis and structural characterization of sulfur nanowires. Microsc Microanal. 2006;12(02):690–691.
  • Salavati-Niasari M, Behfard Z, Maddahfar M. Controllable synthesis of Bi2S3 via a simple hydrothermal approach starting from an inorganic precursor. J Indus Eng Chem. 2014;20(6):4066–4075.
  • Goudarzi M, Ghanbari D, Salavati-Niasari M. Photo-catalyst thallium sulfide: synthesis and optical characterization different morphologies of Tl2S nanostructures. J Mater Sci: Mater Electron. 2015;26:8798–8806.
  • Goudarzi M, Salavati-Niasari M, Bazarganipour M, et al. Sonochemical synthesis of Tl2O3 nanostructures: supported on multi-walled carbon nanotube modified electrode for monitoring of copper ions. J Mater Sci: Mater Electron. 2016;27:3675–3682.
  • Mohandes F, Salavati-Niasari M. Freeze drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite. RSC Adv. 2014a;4:25993–26001.
  • Mohandesa F, Salavati-Niasari M. Influence of morphology on the in vitro bioactivity of hydroxyapatite nanostructures prepared by precipitation method. New J Chem. 2014b;38:4501–4509.
  • Chhotaray PK, Jella S, Gardas RL. Structural and compositional effect on the acoustic and volumetric properties of ammonium based ionic liquids with water and N-methyl-2-pyrrolidone. J Mol Liquids. 2016;219:829–844.
  • Ilardi EA, Vitaku E, Njardarson JT. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem. 2014;57(7):2832–2842.
  • Yadav A, Kon K, Kratosova G, et al. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett. 2015;37(11):2099–2120.
  • Deshpande AS, Khomane BR, Vaidya BK, et al. Sulfur nanoparticles synthesis and characterization from H2S gas, using novel biodegradable iron chelates in w/o microemulsion. Nanoscale Res Lett. 2008;3:221–229.
  • Guo Y, Zhao J, Yang S, et al. Preparation and characterization of monoclinic sulfur nanoparticles by water-in-oil microemulsion technique. Powder Technol. 2006;162:83–86.
  • Soleimani M, Aflatouni F, Khani A. A new and simple method for sulfur nanoparticles synthesis. Colloid J. 2013;75(1):112–116.
  • Han DY, Yang HY, Shen CB, et al. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technol. 2004;147(1–3):113–116.
  • Zhang W, Qiao X, Chen J. Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids Surf A Physico Chem Eng Asp. 2007;299(1–3):22–28.
  • Chaudhuri RG, Paria S. Synthesis of sulfur nanoparticles in aqueous surfactant solutions. J Colloid Interface Sci. 2010;343:439–446.
  • Massalimov IA, Shainurova AR, Khusainov AN, et al. Production of sulfur nanoparticles from aqueous solution of potassium polysulfide. Russ J Appl Chem. 2012;8(12):1832−1837.
  • Shamsipur M, Pourmortazavi SM, Roushani M, et al. Novel approach for electrochemical preparation of sulfur nanoparticles. Microchim Acta. 2011;173:445–451.
  • Cheng XZ, Cheng K, Liu J, et al. Synthesis and characterizations of nanoparticles sulfur using eggshell membrane as template. Mater Sci Forum. 2011;675-677:279–282.
  • Suleiman M, Masri MA, Ali AA, et al. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. J Mater Environ Sci. 2015;6(2):513–518.
  • Xie XY, Li LY, Zheng PS, et al. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200. Mater Res Bull. 2012;47(11):3665–3669.
  • Xie X-Y, Zheng W-J, Bai Y, et al. Cystine modified nano-sulfur and its spectral properties. Mater Lett. 2009;63:1374–1376.
  • Massalimov IA, Khusainov NA, Zainitdinova RM, et al. Chemical precipitation of sulfur nanoparticles from aqueous solutions. Russian J Appl Chem. 2014;87(6):700−708.
  • Araj SEA, Salem NM, Ghabeish IH, et al. Toxicity of nanoparticles against Drosohila melanogaster (Diptera: Drosophilidae). J Nanomater. 2015;2015:1–9.
  • Awwad AM, Salem NM, Abdeen AO. Novel approach for synthesis sulfur (S-NPs) nanoparticles using Albizia julibrissin fruits extract. Adv Mat Lett. 2015;6(5):432–435.
  • Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874.
  • Ingle A, Duran N, Rai M. Bioactivity, mechanism of action and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol. 2014;98(30):1001–1009.
  • Potara M, Bawaskar M, Simon T, et al. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Coll Surfaces B: Biointerf. 2015;1(133):296–303.
  • Rai M, Kon K, Ingle A, et al. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014;98(5):1951–1961.
  • Roy Choudhury S, Roy S, Goswami A, et al. Polyethylene glycol-stabilized sulfur nanoparticles: an effective antimicrobial agent against multidrug-resistant bacteria. J Anti Chem. 2012;67(5):1134.
  • Roy Choudhury S, Mandal A, Chakravorty D, et al. Evaluation of physicochemical properties, and antimicrobial efficacy of monoclinic sulfur-nanocolloid. J Nanopart Res. 2013;15:1491.
  • Roy Choudhury S, Mandal A, Ghosh M, et al. Investigation of antimicrobial physiology of orthorhombic and monoclinic nanoallotropes of sulfur at the interface of transcriptome and metabolome. Appl Microbiol Biotechnol. 2013;97:5965–5978.
  • Thakur S, Barua S, Karak N. Self-healable castor oil based tough smart hyper branched polyurethane nanocomposite with antimicrobial attributes. RSC Adv. 2015;5:2167–2176.
  • Roy Choudhury S, Nair KK, Kumar R, et al. Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. In: Giri PK, Goswami DK, Perumal A, editors. AIP Conf. Proc. 2010;1276:154. Melville, NY: AIP Publisher.
  • Gogoi R, Singh PK, Kumar R, et al. Suitability of nano-sulfur for biorational management of powdery mildew of okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. J Plant Pathol Microb. 2013;4(4):171.
  • Roy Choudhury S, Ghosh M, Goswami A. Inhibitory effects of sulfur nanoparticles on membrane lipids of Aspergillus niger: a novel route of fungistasis. Curr Microbiol. 2012;65:91–97.
  • Roy Choudhury S, Ghosh M, Mandal A, et al. Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol. 2011;90:733–743.
  • Rao KJ, Paria S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv. 2013;3:10471–10478.
  • Sarkar S. Antimicrobial activity of sulphur nanoparticles on dandruff causing Malassezia yeasts [ M.Tech thesis]. Rourkela: National Institute of Technology; 2012.
  • Schneider T, Baldauf A, Ba LA, et al. Selective antimicrobial activity associated with sulfur nanoparticles. J Biomed Nanotechnol. 2011;7(2):1–11.
  • Lee J, Lee HJ, Park JD, et al. Anticancer activity of highly purified sulfur in immortalized and malignant human oral keratinocytes. Toxicol In Vitro. 2008;22(1):87–95.
  • Roy Choudhury S, Goswami A. Supramolecular reactive sulfur nanoparticles: a novel and efficient antimicrobial agent. J Appl Microbiol. 2012;114:1–10.
  • Ali A. Preparation of sulfur nanoparticles and investigating their activities against cancer cell [ M.Sc Thesis]. Nablus, Palestine: An- Nijah National University; 2013.
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;31:61–62.
  • Beyth N, Haddad YH, Domb A, et al. Alternative antimicrobial approach: nano- antimicrobial material. J Evid Based Complementary Altern Med. 2015;2015:1–16.
  • Kandi V, Kandi S. Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health. 2015;37:e2015020.
  • Gopalakrishnan K, Ramesh C, Ragunathan V, et al. Antibacterial activity of Cu2O nanoparticles on E. coli synthesize from tridax procumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Bio. 2012;7(2):833–839.
  • Hwang ET, Lee JH, Chae YJ, et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small. 2008;4:746–750.
  • Kim SW, Jung JH, Lamsal K, et al. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Korean Soc Mycol Mycobiol. 2012;40:53–58.
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanobiotechnol. 2005;16:2346–2353.
  • Schrand AM, Rahman MF, Hussain SM, et al. Metal-based nanoparticles and their toxicity assessment. WIREs. Nanomed Nanobiotechnol. 2010;2:554–568.
  • Owens RG. Chemistry and physiology of fungicidal action. Ann Rev Phytopathol. 1963;1:77–100.
  • Libenson L, Hadley FP, Mcllroy AP, et al. Antibacterial effect of elemental sulfur. J Infect Dis. 1953;93:28–35.
  • McCallan SEA. The nature of the fungicidal action of copper and sulfur. Botanical Rev. 1949;15:629–643.
  • Roy Choudhury S, Goswami A. Surface modified sulfur nanoparticles can escape the glutathione reductase mediated detoxification system in fungi. 2015. Available from: http://arxiv.org/abs/1501.02409
  • Jabir NR, Tabrez S, Ashraf GM, et al. Nanotechnology based approaches in anticancer research. Int J Nanomed. 2012;7:4391–4408.
  • Liu H, Zhang Y, Zheng S, et al. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells. Biochem Biophys Res Commun. 2016. doi: 10.1016/j.bbrc.2016.07.026.
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–146.
  • Colon J, Hsieh N, Ferguson A, et al. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine. 2010;6:698–705.
  • Tarnuzzer RW, Colon J, Patil S, et al. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005;5:2573–2577.
  • An YL, Nie F, Wang ZY, et al. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells. Int J Nanomed. 2011;6:3187–3194.
  • Sivaraj R, Rahman PK, Rajiv P, et al. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A. 2014;129:255–258.
  • Wang Y, Yang F, Zhang HX, et al. Cuprous oxide nanoparticles inhibits the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis. 2013;4:e783.
  • AshaRani PV, Kah Mun GL, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290.
  • AshaRani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10(65):1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.