736
Views
21
CrossRef citations to date
0
Altmetric
Review

Delivering phage therapy per os: benefits and barriers

, &
Pages 167-179 | Received 22 Jun 2016, Accepted 23 Nov 2016, Published online: 12 Dec 2016

References

  • D’Herelle F. On an invisible microbe antagonistic dysenteric bacilli: brief note by Mr. F. D’Herelle presented by Mr. Roux. Res Microbiol. 2007;158(7):553–554.
  • Chanishvili N. Chapter 1, Phage therapy—history from Twort and d’Herelle through soviet experience to current approaches. In: Małgorzata Ł, Wacław S, editors. Advances in virus research. San Diego: Elsevier Academic Press Inc; 2012;83. p. 3–40.
  • Slopek S, Weber-Dabrowska B, Dabrowski M, et al. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp. 1987;35(5):569–583.
  • Ryan EM, Gorman SP, Donnelly RF, et al. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol. 2011;63(10):1253–1264.
  • Dabrowska K, Switala-Jelen K, Opolski A, et al. Bacteriophage penetration in vertebrates. J Appl Microbiol. 2005;98(1):7–13.
  • Weber-Dabrowska B, Mulczyk M, Górski A. Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc. 2003;35(4):1385–1386.
  • Brüssow H. Targeting the gut to protect the bladder: oral phage therapy approaches against urinary Escherichia coli infections? Environ Microbiol. 2016;18(7):2084–2088.
  • Majewska J, Beta W, Lecion D, et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses. 2015;7(8):4783–4799.
  • Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. In: Dobrindt U, Hacker HJ, Svanborg C, editors. Between pathogenicity and commensalism. Berlin: Springer Berlin Heidelberg; 2013. p. 3–32.
  • Liu Y-Y, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168.
  • Tadesse DA, Zhao S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerging Infect Dis Journal. 2012;18(5):741.
  • Collignon P. Resistant Escherichia coli— we are what we eat. Clin Infect Dis. 2009;49(2):202–204.
  • Lim JY, Yoon JW, Hovde CJ, et al. Overview of Escherichia coli O157: H7and its plasmid O157. J Microbiol Biotechnol. 2010;20(1):5–14.
  • Nassar FJ, Rahal EA, Sabra A, et al. Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157: H7Shiga Toxin Release and Role of the SOS Response. Foodborne Pathog Dis. 2013;10(9):805–812.
  • Angel Villegas N, Baronetti J, Albesa I, et al. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157: H7and non-O157 biofilms. Toxicol Vitro. 2015;29(7):1692–1700.
  • Łoś JM, Łoś M, Węgrzyn A, et al. Hydrogen peroxide-mediated induction of the Shiga toxinconverting lambdoid prophage ST2-8624 in Escherichia coli O157: H7. FEMS Immunol Med Microbiol. 2010;58(3):322–329.
  • Tanji Y, Shimada T, Fukudomi H, et al. Therapeutic use of phage cocktail for controlling Escherichia coli O157: H7 in gastrointestinal tract of mice. J Biosci Bioeng. 2005;100(3):280–287.
  • Kudva IT, Jelacic S, Tarr PI, et al. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol. 1999;65(9):3767–3773.
  • Sheng H, Knecht HJ, Kudva IT, et al. Application of bacteriophages to control intestinal Escherichia coli O157: H7levels in ruminants. Appl Environ Microbiol. 2006;72(8):5359–5366.
  • Maura D, Galtier M, Le Bouguénec C, et al. Virulent bacteriophages can target O104: H4Enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother. 2012;56(12):6235–6242.
  • Jaiswal A, Koley H, Mitra S, et al. Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice. Int J Med Microbiol. 2014;304(3–4):422–430.
  • Jun JW, Shin TH, Kim JH, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3: K6Pandemic clinical strain. J Infect Dis. 2014;210(1):72–78.
  • Nale JY, Spencer J, Hargreaves KR, et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother. 2016;60(2):968–981.
  • Watanabe R, Matsumoto T, Sano G, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother. 2007;51(2):446–452.
  • Colom J, Cano-Sarabia M, Otero J, et al. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol. 2015;81(14):4841–4849.
  • Maura D, Morello E, Du Merle L, et al. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ Microbiol. 2012;14(8):1844–1854.
  • Jamalludeen N, Johnson RP, Shewen PE, et al. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet Microbiol. 2009;136(1–2):135–141.
  • Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol. 1983;129(8):2659–2675.
  • Nguyen TLA, Vieira-Silva S, Liston A, et al. How informative is the mouse for human gut microbiota research? Dis Models Mech. 2015;8(1):1–16.
  • Zhang Q, Widmer G, Tzipori S. A pig model of the human gastrointestinal tract. Gut Microbes. 2013;4(3):193–200.
  • Ruppé E, Lixandru B, Cojocaru R, et al. Relative fecal abundance of extended-spectrum-β-lactamase-producing Escherichia coli strains and their occurrence in urinary tract infections in women. Antimicrob Agents Chemother. 2013;57(9):4512–4517.
  • Galtier M, De Sordi L, Maura D, et al. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ Microbiol. 2016;18(7):2237–2245.
  • Sarker SA, Sultana S, Reuteler G, et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine. 2016;4:124–137.
  • Bourdin G, Navarro A, Sarker SA, et al. Coverage of diarrhoea-associated Escherichia coli isolates from different origins with two types of phage cocktails. Microb Biotechnol. 2014;7(2):165–176.
  • Bhowmick TS, Koley H, Das M, et al. Pathogenic potential of vibriophages against an experimental infection with Vibrio cholerae O1 in the RITARD model. Int J Antimicrob Agents. 2009;33(6):569–573.
  • Jaiswal A, Koley H, Ghosh A, et al. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect. 2013;15(2):152–156.
  • Nelson EJ, Harris JB, Glenn Morris J, et al. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Micro. 2009;7(10):693–702.
  • Qadri F, Wierzba TF, Ali M, et al. Efficacy of a single-dose, inactivated oral cholera vaccine in Bangladesh. New England J Med. 2016;374(18):1723–1732.
  • Garg P, Sinha S, Chakraborty R, et al. Emergence of Fluoroquinolone-Resistant Strains of Vibrio cholerae O1 Biotype El Tor among Hospitalized Patients with Cholera in Calcutta, India. Antimicrob Agents Chemother. 2001;45(5):1605–1606.
  • Thapa Shrestha U, Adhikari N, Maharjan R, et al. Multidrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infect Dis. 2015;15:104.
  • Folster JP, Katz L, McCullough A, et al. Multidrug-resistant IncA/C plasmid in Vibrio cholerae from Haiti. Emerg Infect Dis. 2014;20(11):1951–1953.
  • Berthe M, Sandra M, Jean-Jacques M, et al. Antimicrobial drug resistance of Vibrio cholerae democratic Republic of the Congo. Emerging Infect Dis Journal. 2015;21(5):847.
  • Maria S-K, Aleisha R, Jason PF, et al. Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerging Infect Dis Journal. 2011;17(11):2151.
  • Letchumanan V, Chan K-G, Pusparajah P, et al. Insights into bacteriophage application in controlling Vibrio species. Front Microbiol. 2016;7(1114) 10.3389/fmicb.2016.01114.
  • Azman AS, Rudolph KE, Cummings DAT, et al. The incubation period of cholera: a systematic review. J Infect. 2013;66(5):432–438.
  • Marcuk LM, Nikiforov VN, Scerbak JF, et al. Clinical studies of the use of bacteriophage in the treatment of cholera. Bull World Health Organ. 1971;45(1):77–83.
  • Kirn TJ, Jude BA, Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005;438(7069):863–866.
  • Letchumanan V, Pusparajah P, Tan LT-H, et al. Occurrence and antibiotic resistance of Vibrio parahaemolyticus from shellfish in Selangor. Malaysia Front Microbiol. 2015;6:1417.
  • Elmahdi S, DaSilva LV, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiol. 2016;57:128–134.
  • Aslam S, Hamill RJ, Musher DM. Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis. 2005;5(9):549–557.
  • Kwon JH, Olsen MA, Dubberke ER. The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect Dis Clin North Am. 2015;29(1):123–134.
  • Perfeito L, Fernandes L, Mota C, et al. Adaptive mutations in bacteria: high rate and small effects. Science. 2007;317(5839):813–815.
  • Scott L. Fidaxomicin: a review of its use in patients with Clostridium difficile infection. Drugs. 2013;73(15):1733–1747.
  • Almeida R, Gerbaba T, Petrof EO. Recurrent Clostridium difficile infection and the microbiome. J Gastroenterol. 2016;51(1):1–10.
  • Freeman J, Vernon J, Morris K, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015;21(3):248.e249-248.e216.
  • Shah D, Dang M-D, Hasbun R, et al. Clostridium difficile infection: update on emerging antibiotic treatment options and antibiotic resistance. Expert Rev Anti Infect Ther. 2010;8(5):555–564.
  • Ramesh V, Fralick JA, Rolfe RD. Prevention of Clostridium difficile-induced ileocecitis with bacteriophage. Anaerobe. 1999;5(2):69–78.
  • Hargreaves KR, Clokie MRJ. Clostridium difficile phages: still difficult? Front Microbiol. 2014;5(154).
  • Rajkumari N, John NV, Mathur P, et al. Antimicrobial resistance in Pseudomonas sp. causing infections in Trauma patients: a 6 year experience from a South Asian Country. J Glob Infect Dis. 2014;6(4):182–185.
  • Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010;10(4):441–451.
  • Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–585.
  • Boukadida J, de Montalembert M, Gaillard JL, et al. Outbreak of gut colonization by Pseudomonas aeruginosa in immunocompromised children undergoing total digestive decontamination: analysis by pulsed-field electrophoresis. J Clin Microbiol. 1991;29(9):2068–2071.
  • Doershuk CF, Stern RC. Spontaneous bacterial peritonitis in cystic fibrosis. Gut. 1994;35(5):709–711.
  • Manson WL, Coenen JMFH, Klasen HJ, et al. Intestinal bacterial translocation in experimentally burned mice with wounds colonized by pseudomonas aeruginosa. J Trauma Injury Infect Crit Care. 1992;33(5):654–658.
  • Pires DP, Vilas Boas D, Sillankorva S, et al. Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol. 2015;89(15):7449–7456.
  • Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, et al. Chapter 3, Clinical aspects of phage therapy. In: Małgorzata Ł, Wacław S, editors. Advances in virus research. San Diego: Elsevier Academic Press Inc; 2012(83). p. 73–121.
  • Wright A, Hawkins CH, Änggård EE, et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349–357.
  • Silva C, Calva E, Maloy S. One health and food-borne disease: Salmonella transmission between humans, animals, and plants. Microbiol Spectr. 2014;2(1):OH-0020-2013.
  • Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32(2):263–269.
  • Bhan MK, Bahl R, Bhatnagar S. Typhoid and paratyphoid fever. Lancet. 2005;366(9487):749–762.
  • Chiu C-H, Su L-H CC. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev. 2004;17(2):311–322.
  • Álvarez-Ordóñez A, Begley M, Prieto M, et al. Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology. 2011;157(12):3268–3281.
  • Behnsen J, Perez-Lopez A, Nuccio SP, et al. Exploiting host immunity: the Salmonella paradigm. Trends Immunol. 2015;36(2):112–120.
  • Ruby T, McLaughlin L, Gopinath S, et al. Salmonella’s long-term relationship with its host. FEMS Microbiol Rev. 2012;36(3):600–615.
  • Trong TA, Nicholas AF, Melita AG, et al. Global burden of invasive nontyphoidal Salmonella disease, 2010. Emerging Infect Dis Journal. 2015;21(6):941.
  • Crump JA, Sjölund-Karlsson M, Gordon MA, et al. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev. 2015;28(4):901–937.
  • Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol Rev. 2002;26(2):141–148.
  • Folster JP, Campbell D, Grass J, et al. Identification and characterization of multidrug-resistant Salmonella enterica serotype albert isolates in the United States. Antimicrob Agents Chemother. 2015;59(5):2774–2779.
  • Wall SK, Zhang JY, Rostagno MH, et al. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol. 2010;76(1):48–53.
  • Gebru E, Lee JS, Son JC, et al. Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. J Anim Sci. 2010;88(12):3880–3886.
  • Albino LAA, Rostagno MH, Hungaro HM, et al. Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs. Foodborne Pathog Dis. 2014;11(8):602–609.
  • Callaway TR, Edrington TS, Brabban A, et al. Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing swine. Foodborne Pathog Dis. 2011;8(2):261–266.
  • Fiorentin L, Vieira ND, Barioni W. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol. 2005;34(3):258–263.
  • Andreatti RLF, Higgins JP, Higgins SE, et al. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar enteritidis in vitro and in vivo. Poult Sci. 2007;86(9):1904–1909.
  • Kumar N, David MZ, Boyle-Vavra S, et al. High Staphylococcus aureus colonization prevalence among patients with skin and soft tissue infections and controls in an urban emergency department. J Clin Microbiol. 2015;53(3):810–815.
  • Kikuchi K, Takahashi N, Piao CC, et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus strains causing neonatal toxic shock syndrome-like exanthematous disease in neonatal and perinatal wards. J Clin Microbiol. 2003;41(7):3001–3006.
  • Boyce JM, Havill NL. Nosocomial antibiotic-associated diarrhea associated with enterotoxin-producing strains of methicillin-resistant Staphylococcus aureus. Am J Gastroenterol. 2005;100(8):1828–1834.
  • Lis DO, Pacha JZ, Idzik D. Methicillin resistance of airborne coagulase-negative staphylococci in homes of persons having contact with a hospital environment. Am J Infect Control. 2009;37(3):177–182.
  • O’Flaherty S, Coffey A, Meaney W, et al. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant Staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol. 2005;187(20):7161–7164.
  • Acton DS, Mjt P-S, van Wamel W, et al. Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that of nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis. 2009;28(2):115–127.
  • Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother. 2005;49(3):1220–1221.
  • Capparelli R, Parlato M, Borriello G, et al. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother. 2007;51(8):2765–2773.
  • Kaźmierczak Z, Górski A, Dąbrowska K. Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses. 2014;6(7):2551–2570.
  • Vandersteegen K, Kropinski AM, Nash JHE, et al. Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. J Virol. 2013;87(6):3237–3247.
  • Vandersteegen K, Mattheus W, Ceyssens P-J, et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. Plos One. 2011;6(9):e24418.
  • Leszczyński P, Weber-Dabrowska B, Kohutnicka M, et al. Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker - case report. Folia Microbiol (Praha). 2006;51(3):236–238.
  • Lusiak-Szelachowska M, Zaczek M, Weber-Dabrowska B, et al. Phage neutralization by Sera of patients receiving phage therapy. Viral Immunol. 2014;27(6):295–304.
  • Borysowski J, Górski A. Is phage therapy acceptable in the immunocompromised host? Int J Infect Dis. 2008;12(5):466–471.
  • Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2015;6:1543.
  • Abdulamir AS, Jassim SAA, Bakar FA. Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob. 2014;13(39).
  • Kang H-W, Kim J-W, Jung T-S, et al. wksl3, a new biocontrol agent for Salmonella enterica Serovars Enteritidis and Typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol. 2013;79(6):1956–1968.
  • Denou E, Bruttin A, Barretto C, et al. T4 phages against Escherichia coli diarrhea: potential and problems. Virology. 2009;388(1):21–30.
  • Bruttin A, Brussow H. Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother. 2005;49(7):2874–2878.
  • Sarker SA, McCallin S, Barretto C, et al. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology. 2012;434(2):222–232.
  • McCallin S, Sarker S, Barrett C, et al. Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology. 2013;443(2):187–196.
  • Gorski A, Miedzybrodzki R, Borysowski J, et al. Phage as a modulator of immune responses: practical implications for phage therapy. In: Lobocka M, Szybalski WT, editors. Advances in virus research, Vol 83: bacteriophages, Pt B. San Diego: Elsevier Academic Press Inc; 2012. p. 41–71.
  • Miernikiewicz P, Dabrowska K, Piotrowicz A, et al. T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One. 2013;8(8):e71036.
  • Miernikiewicz P, Dabrowska K, Piotrowicz A, et al. T4 phages head proteins do not induce production of reactive oxygen species by granulocytes. Immunology. 2012;137:203–203.
  • Park K, Cha KE, Myung H. Observation of inflammatory responses in mice orally fed with bacteriophage T7. J Appl Microbiol. 2014;117(3):627–633.
  • Weber-Dabrowska B, Zimecki M, Mulczyk M, et al. Effect of phage therapy on the turnover and function of peripheral neutrophils. FEMS Immunol Med Microbiol. 2002;34(2):135–138.
  • Chibani-Chennoufi S, Sidoti J, Bruttin A, et al. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother. 2004;48(7):2558–2569.
  • Tennant SM, Hartland EL, Phumoonna T, et al. Influence of gastric acid on susceptibility to infection with ingested bacterial pathogens. Infect Immun. 2008;76(2):639–645.
  • Cook GC. Infective gastroenteritis and its relationship to reduced gastric acidity. Scand J Gastroenterol. 1985;20(sup111):17–22.
  • Chohiska-Pulit A, Mitula P, Sliwka P, et al. Bacteriophage encapsulation: trends and potential applications. Trends Food Sci Technol. 2015;45(2):212–221.
  • Zhenxing T, Xiaoqing H, Shailja B, et al. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Res Int. 2013;52(2):460–466.
  • Tang Z, Huang X, Sabour PM, et al. Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. Lwt-Food Sci Technol. 2015;60(1):263–270.
  • Dini C, Islan GA, Castro GR. Characterization and stability analysis of biopolymeric matrices designed for phage-controlled release. Appl Biochem Biotechnol. 2014;174(6):2031–2047.
  • Stephen TA, Cameron T-A. Phage therapy pharmacology. Curr Pharm Biotechnol. 2010;11(1):28–47.
  • Smith GP, Petrenko VA. Phage display. Chem Rev. 1997;97(2):391–410.
  • Nicastro J, Sheldon K, Slavcev RA. Bacteriophage lambda display systems: developments and applications. Appl Microbiol Biotechnol. 2014;98(7):2853–2866.
  • Jo A, Ding T, Ahn J. Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. Food Sci Biotechnol. 2016;25(3):935–940.
  • Torres-Barceló C, Hochberg ME. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016;24(4):249–256.
  • Kamal F, Dennis JJ. Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol. 2015;81(3):1132–1138.
  • Cao J, Sun Y-Q, Berglindh T, et al. Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochimica Biophysica Acta (BBA). 2000;1474(1):107–113.
  • Jun SY, Jung GM, Yoon SJ, et al. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents. 2013;41(2):156–161.
  • Lood R, Winer BY, Pelzek AJ, et al. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother. 2015;59(4):1983–1991.
  • Nelson DC, Schmelcher M, Rodriguez-Rubio L, et al. Endolysins as antimicrobials. Adv Virus Res. 2012;83:299–365.
  • Kittler S, Fischer S, Abdulmawjood A, et al. Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Appl Environ Microbiol. 2013;79(23):7525–7533.
  • Carvalho CM, Gannon BW, Halfhide DE, et al. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 2010;10(232):1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.