12,648
Views
27
CrossRef citations to date
0
Altmetric
Editorial

Candida albicans morphology: still in focus

&
Pages 327-330 | Received 10 Jan 2017, Accepted 31 Jan 2017, Published online: 21 Feb 2017

References

  • Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 2014;22(12):707–714.
  • Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2016;15:96–108.
  • Rizzetto L, Weil T, Cavalieri D. Systems level dissection of Candida recognition by dectins: a matter of fungal morphology and site of infection. Pathogens. 2015;4(3):639–661.
  • Yang W, Yan L, Wu C, et al. Fungal invasion of epithelial cells. Microbiol Res. 2014;169(11):803–810.
  • Jacobsen ID, Wilson D, Wächtler B, et al. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther. 2012;10(1):85–93.
  • Carlisle PL, Kadosh D. A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell. 2013;24(3):246–260.
  • O’Meara TR, Veri AO, Ketela T, et al. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat Commun. 2015;6:6741.
  • Ryan O, Shapiro RS, Kurat CF, et al. Global gene deletion analysis exploring yeast filamentous growth. Science. 2012;337(6100):1353–1356.
  • Cruz MR, Graham CE, Gagliano BC, et al. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun. 2013;81(1):189–200.
  • Matsubara VH, Wang Y, Bandara HM, et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol. 2016;100(14):6415–6426.
  • Morales DK, Grahl N, Okegbe C, et al. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio. 2013;4(1):e00526–00512.
  • van Leeuwen PT, van der Peet JM, Bikker FJ, et al. Interspecies interactions between Clostridium difficile and Candida albicans. Msphere. 2016;1:6.
  • Bor B, Cen L, Agnello M, et al. Morphological and physiological changes induced by contact-dependent interaction between Candida albicans and Fusobacterium nucleatum. Sci Rep. 2016;6:27956.
  • Bandara HM, Cheung BP, Watt RM, et al. Secretory products of Escherichia coli biofilm modulate Candida biofilm formation and hyphal development. J Investig Clin Dent. 2013;4(3):186–199.
  • Orsi CF, Sabia C, Ardizzoni A, et al. Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J Biol Regul Homeost Agents. 2014;28(4):743–752.
  • Falsetta ML, Klein MI, Colonne PM, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 2014;82(5):1968–1981.
  • Nash EE, Peters BM, Palmer GE, et al. Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis. Infect Immun. 2014;82(8):3426–3435.
  • Schlecht LM, Peters BM, Krom BP, et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology. 2015;161(Pt 1):168–181.
  • Tati S, Davidow P, McCall A, et al. Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal Candidiasis. Plos Pathog. 2016;12(3):e1005522.
  • Brunke S, Hube B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol. 2013;15(5):701–708.
  • Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol. 2016;54(3):170–177.
  • Grahl N, Demers EG, Lindsay AK, et al. Mitochondrial activity and Cyr1 are key regulators of Ras1 activation of C. albicans virulence pathways. Plos Pathog. 2015;11(8):e1005133.
  • Piispanen AE, Grahl N, Hollomon JM, et al. Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation. Mol Microbiol. 2013;89(1):166–178.
  • Greig JA, Sudbery IM, Richardson JP, et al. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. Plos Pathog. 2015;11(1):e1004630.
  • Blankenship JR, Cheng S, Woolford CA, et al. Mutational analysis of essential septins reveals a role for septin-mediated signaling in filamentation. Eukaryot Cell. 2014;13(11):1403–1410.
  • Calderon-Norena DM, Gonzalez-Novo A, Orellana-Munoz S, et al. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development. Plos Genet. 2015;11(4):e1005152.
  • Woolford CA, Lagree K, Xu W, et al. Bypass of Candida albicans filamentation/biofilm regulators through diminished expression of protein kinase Cak1. Plos Genet. 2016;12(12):e1006487.
  • Su C, Lu Y, Liu H. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol Biol Cell. 2013;24(3):385–397.
  • Cleary IA, Lazzell AL, Monteagudo C, et al. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol. 2012;85(3):557–573.
  • Cheon SA, Bal J, Song Y, et al. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol. 2012;83(4):728–745.
  • Douglas LM, Wang HX, Konopka JB. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans. MBio. 2013;4(6):e00723–00713.
  • Si H, Hernday AD, Hirakawa MP, et al. Candida albicans white and opaque cells undergo distinct programs of filamentous growth. Plos Pathog. 2013;9(3):e1003210.
  • Desai PR, van Wijlick L, Kurtz D, et al. Hypoxia and temperature regulated morphogenesis in Candida albicans. Plos Genet. 2015;11(8):e1005447.
  • Lu Y, Su C, Solis NV, et al. Synergistic regulation of hyphal elongation by hypoxia, CO(2), and nutrient conditions controls the virulence of Candida albicans. Cell Host Microbe. 2013;14(5):499–509.
  • Haran J, Boyle H, Hokamp K, et al. Telomeric ORFs (TLOs) in Candida spp. encode mediator subunits that regulate distinct virulence traits. Plos Genet. 2014;10(10):e1004658.
  • Tebbji F, Chen Y, Richard Albert J, et al. A functional portrait of Med7 and the mediator complex in Candida albicans. Plos Genet. 2014;10(11):e1004770.
  • Wartenberg A, Linde J, Martin R, et al. Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. Plos Genet. 2014;10(12):e1004824.
  • Lu Y, Su C, Unoje O, et al. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc Natl Acad Sci U S A. 2014;111(5):1975–1980.
  • Langford ML, Hargarten JC, Patefield KD, et al. Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. Eukaryot Cell. 2013;12(9):1281–1292.
  • Lindsay AK, Deveau A, Piispanen AE, et al. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot Cell. 2012;11(10):1219–1225.
  • Polke M, Sprenger M, Scherlach K, et al. A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol. 2016 Sep 14. doi: 10.1111/mmi.13526. [Epub ahead of print].
  • Nickerson KW, Atkin AL. Deciphering fungal dimorphism: farnesol’s unanswered questions. Mol Microbiol. 2016 Dec 17. doi: 10.1111/mmi.13601. [Epub ahead of print].
  • Hargarten JC, Moore TC, Petro TM, et al. Candida albicans quorum sensing molecules stimulate mouse macrophage migration. Infect Immun. 2015;83(10):3857–3864.
  • Leonhardt I, Spielberg S, Weber M, et al. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. MBio. 2015;6(2):e00143.
  • Caballero-Lima D, Sudbery PE. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol Biol Cell. 2014;25(7):1097–1110.
  • Brand AC, Morrison E, Milne S, et al. Cdc42 GTPase dynamics control directional growth responses. Proc Natl Acad Sci U S A. 2014;111(2):811–816.
  • Thomson DD, Wehmeier S, Byfield FJ, et al. Contact-induced apical asymmetry drives the thigmotropic responses of Candida albicans hyphae. Cell Microbiol. 2015;17(3):342–354.
  • Pulver R, Heisel T, Gonia S, et al. Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. Eukaryot Cell. 2013;12(4):482–495.
  • Johnston DA, Tapia AL, Eberle KE, et al. Three prevacuolar compartment Rab GTPases impact Candida albicans hyphal growth. Eukaryot Cell. 2013;12(7):1039–1050.
  • Patenaude C, Zhang Y, Cormack B, et al. Essential role for vacuolar acidification in Candida albicans virulence. J Biol Chem. 2013;288(36):26256–26264.
  • Mech F, Wilson D, Lehnert T, et al. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach. Cytometry A. 2014;85(2):126–139.
  • Wilson D, Mayer FL, Miramon P, et al. Distinct roles of Candida albicans-specific genes in host-pathogen interactions. Eukaryot Cell. 2014;13(8):977–989.
  • Staab JF, Datta K, Rhee P. Niche-specific requirement for hyphal wall protein 1 in virulence of Candida albicans. PLoS One. 2013;8(11):e80842.
  • Okamoto-Shibayama K, Kikuchi Y, Kokubu E, et al. Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth. FEMS Yeast Res. 2014;14(4):674–677.
  • Naseem S, Araya E, Konopka JB. Hyphal growth in Candida albicans does not require induction of hyphal-specific gene expression. Mol Biol Cell. 2015;26(6):1174–1187.
  • Martin R, Albrecht-Eckardt D, Brunke S, et al. A core filamentation response network in Candida albicans is restricted to eight genes. PLoS One. 2013;8(3):e58613.
  • Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68.
  • Bain JM, Louw J, Lewis LE, et al. Candida albicans hypha formation and mannan masking of beta-glucan inhibit macrophage phagosome maturation. MBio. 2014;5(6):e01874.
  • Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. Plos Pathog. 2014;10(3):e1003995.
  • Danhof HA, Lorenz MC. The Candida albicans ATO gene family promotes neutralization of the macrophage phagolysosome. Infect Immun. 2015;83(11):4416–4426.
  • Uwamahoro N, Verma-Gaur J, Shen HH, et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. MBio. 2014;5(2):e00003–00014.
  • Wellington M, Koselny K, Krysan DJ. Candida albicans morphogenesis is not required for macrophage interleukin 1beta production. MBio. 2012;4(1):e00433–00412.
  • Fazly A, Jain C, Dehner AC, et al. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proc Natl Acad Sci U S A. 2013;110(33):13594–13599.
  • Heintz-Buschart A, Eickhoff H, Hohn E, et al. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay. J Biotechnol. 2013;164(1):137–142.
  • Stylianou M, Uvell H, Lopes JP, et al. Novel high-throughput screening method for identification of fungal dimorphism blockers. J Biomol Screen. 2015;20(2):285–291.
  • van Hauwenhuyse F, Fiori A, van Dijck P. Ascorbic acid inhibition of Candida albicans Hsp90-mediated morphogenesis occurs via the transcriptional regulator Upc2. Eukaryot Cell. 2014;13(10):1278–1289.
  • Kavanaugh NL, Zhang AQ, Nobile CJ, et al. Mucins suppress virulence traits of Candida albicans. MBio. 2014;5(6):e01911.
  • Vediyappan G, Dumontet V, Pelissier F, et al. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One. 2013;8(9):e74189.
  • Kulkarny VV, Chavez-Dozal A, Rane HS, et al. Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob Agents Chemother. 2014;58(12):7501–7509.
  • Kasper L, Miramon P, Jablonowski N, et al. Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase and morphology. J Med Microbiol. 2015;64(7):714–723.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.