495
Views
16
CrossRef citations to date
0
Altmetric
Review

Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: what is the evidence on dosing regimens?

, , ORCID Icon, ORCID Icon, &
Pages 201-210 | Received 18 Oct 2018, Accepted 21 Jan 2019, Published online: 04 Feb 2019

References

  • Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–1081.
  • Spellberg B, Guidos R, Gilbert D, et al. The Infectious Diseases Society of America. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the infectious diseases society of America. Clin Infect Dis. 2008;46:155–164.
  • Spellberg B, Blaser M, Guidos RJ, et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis. 2011;52(Suppl 5):S397–S428.
  • Maviglia R, Nestorini R, Pennisi M. Role of old antibiotics in multidrug resistant bacterial infections. Curr Drug Targets. 2009;10:895–905.
  • Dijkmans A, Nvo Z, Burggraaf J, et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics. 2017;6(24). DOI:10.3390/antibiotics6040024
  • Matzi V, Lindenmann J, Porubsky C, et al. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J Antim Chemoth. 2010;65(5):995–998.
  • Vardakas KZ, Legakis NJ, Trianides N, et al. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Intern J Antimicrob Agents. 2016;47(4):269–285.
  • Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:e732–e739.
  • Bergen PJ, Landersdorfer CB, Lee HJ, et al. “Old” antibiotics for emerging multidrug-resistant bacteria. Curr Opin Infect Dis. 2012;25:626–633.
  • Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant enterobacteriaceae. Virulence. 2017;19;8(4):403-406.
  • Traunmuller F, Popovic M, Konz KH, et al. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50:493–503.
  • Mouton JW, Ambrose PG, Canton R, et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat. 2011;14:107–117.
  • [cited 2018 Sep 30]. https://pubchem.ncbi.nlm.nih.gov/compound/fosfomycin
  • Kahan FM, Kahan JS, Cassidy PJ, et al. The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci. 1974;235:364–386.
  • Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science. 1969;166:122–123.
  • http://esferasalud.com/featured/cepa-centro-de-investigacion
  • Falagas ME, Vouloumanou EK, Samonis G, et al. Fosfomycin. Clin Microbiol Rev. 2016;29:321–347.
  • Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular mechanisms: clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013;2:217–236.
  • Falagas ME, Athanasaki F, Voulgaris GL, et al. Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int J Antimicrob Agents. 2018 Sep 27;pii:S0924-8579(18)30272–3.
  • Rigsby RE, Fillgrove KL, Beihoffer LA, et al. Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily. Meth Enzymol. 2005;401:367–379.
  • Electronic medicines compendium [Internet]. [cited 2018 Oct 13]. Available from: https://www.medicines.org.uk/emc/product/5439/smpc
  • Medikamio [internet]. [cited 2018 Oct 13]. Available from: https://medikamio.com/de-de/medikamente/infectofos-5-g/pil
  • Paladin Labs Inc. [internet]. [cited 2018 Oct 13]. Available from: http://www.paladin-labs.com/our_products/Monurol-Sachet-PM-En.pdf
  • ERN Laboratories [internet]. [cited 2018 Oct 13]. Available from: http://www.ern.es/wp-content/uploads/2013/01/ENG-FOSFOCINA-ORAL.pdf
  • Zhanel GG, Zhanel MA, Karlowsky JA. Intravenous fosfomycin: an assessment of its potential for use in the treatment of systemic infections in Canada. Can J Infect Dis Med Microbiol. 2018;25:8912039.
  • Bergan T. Pharmacokinetic comparison between fosfomycin and other phosphonic acid-derivatives. Chemotherapy. 1990;36:10–18.
  • Frossard M, Joukhadar C, Erovic BM, et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob Agents Chemoth. 2000;44(10):2728–2732.
  • Wenzler E, Ellis-Grosse EJ, Rodvold KA. Pharmacokinetics, safety, and tolerability of single-dose intravenous (ZTI-01) and oral fosfomycin in healthy volunteers. Antimicrob Agents Chemoth. 2017;61(9).
  • Gattringer R, Meyer B, Heinz G, et al. Single-dose pharmacokinetics of fosfomycin during continuous venovenous haemofiltration. J Antim Chemoth. 2006;58(2):367–371.
  • Joukhadar C, Klein N, Dittrich P, et al. Target site penetration of fosfomycin in critically ill patients. J Antim Chemoth. 2003;51(5):1247–1252.
  • Parker SL, Frantzeskaki F, Wallis SC, et al. Population pharmacokinetics of fosfomycin in critically Ill patients. Antim Agents Chemoth. 2015;59(10):6471–6476.
  • Pfausler B, Spiss H, Dittrich P, et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antim Chemoth. 2004;53(5):848–852.
  • Pfeifer G, Frenkel C, Entzian W. Pharmacokinetic aspects of cerebrospinal-fluid penetration of fosfomycin. Intern J Clin Pharmac Reas. 1985;5(3):171–174.
  • Schmidt JJ, Bode-Boger SM, Wilhelmi M, et al. Pharmacokinetics and total removal of fosfomycin in two patients undergoing intermittent haemodialysis and extended dialysis: prescription needs to avoid under-dosing. J Antim Chemoth. 2016;71(9):2673–2674.
  • Grabein B, Graninger W, Rodríguez Baño J, et al. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin Microbiol Infect. 2017;23(6):363–372.
  • Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.
  • Sauermann R, Karch R, Langenberger H, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antim Agents Chemoth. 2005;49(11):4448–4454.
  • Roussos N, Karageorgopoulos DE, Samonis G, et al. Clinical significance of pharmacokinetic and pharmacodynamic characteristics of fosfomycin for the treatment of patients with systemic infections. Int J Antimicrob Agents. 2009;34(6):506–515.
  • Zavascki AP, Bulitta JB, Landersdorfer CB. Combination therapy for carbapenem-resistant gram-negative bacteria. Expert Rev Anti Infect Ther. 2013;11(12):1333–1353.
  • Grif K, Dierich MP, Pfaller K, et al. In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J Antim Chemoth. 2001;48(2):209–217.
  • Docobo-Perez F, Drusano GL, Johnson A, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antim Agents Chemoth. 2015;59(9):5602–5610.
  • VanScoy BD, McCauley J, Ellis-Grosse EJ, et al. Exploration of the pharmacokinetic-pharmacodynamic relationships for fosfomycin efficacy using an in vitro infection model. Antimicrob Agents Chemoth. 2015;59(12):7170–7177.
  • VanScoy B, McCauley J, Bhavnani SM, et al. Relationship between fosfomycin exposure and amplification of Escherichia coli subpopulations with reduced susceptibility in a hollow-fiber infection model. Antimicrob Agents Chemother. 2016;60(9):5141–5145.
  • Lepak AJ, Zhao M, VanScoy B, et al. In vivo pharmacokinetics and pharmacodynamics of ZTI-01 (fosfomycin for injection) in the neutropenic murine thigh infection model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e00476–e004717.
  • The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. Avialable from: http://www.eucast.org
  • Bilal H, Peleg AY, McIntosh MP, et al. Elucidation of pharmacokinetic/pharmacodynamic determinants of fosfomycin activity against Pseudomonas aeruginosa using a dynamic in vitro model. J Antim Chemoth. 2018;73(6):1570–1578.
  • Sime FB, Johnson A, Whalley S, et al. Pharmacodynamics of aerosolized fosfomycin and Amikacin against resistant clinical isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a hollow-fiber infection model: experimental basis for combination therapy. Antimicrob Agents Chemoth. 2017;61(1):8.
  • Snyder ADH, Werth BJ, Nonejuie P, et al. Fosfomycin enhances the activity of daptomycin against vancomycin-resistant enterococci in in vitro pharmacokinetic-pharmacodynamic model. Antimicrob Agents Chemoth. 2016;60(10):5716–5723.
  • Albur MS, Noel A, Bowker K, et al. The combination of colistin and fosfomycin is synergistic against NDM-1-producing Enterobacteriaceae in vitro pharmacokinetic/pharmacodynamic model experiments. Int J Antimicrob Agents. 2015;46(5):560–567.
  • Karageorgopoulos DE, Miriagou V, Tzouvelekis LS, et al. Emergence of resistance to fosfomycin used as adjunct therapy in KPC Klebsiella pneumoniae bacteraemia: report of three cases. J Antimicrob Chemother 2012; 67:2777–2779
  • Yang X, Domalaon R, Lyu Y, et al. Tobramycin-Linked efflux pump inhibitor conjugates synergize fluoroquinolones, rifampicin and fosfomycin against multidrug-resistant pseudomonas aeruginosa. J Clin Med. 2018;7(7):E158. pii.
  • Florent A, Chichmanian RM, Cua E, et al. Adverse events associated with intravenous fosfomycin. Intern J Antimicrob Agents. 2011;37:82–83.
  • Shorr AF, Pogue JM, Mohr JF. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections. Expert Rev Antiinfective Ther. 2017;15:935–945.
  • Schintler MV, Traunmuller F, Metzler J, et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64:574–578.
  • Legat FJ, Maier A, Dittrich P, et al. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antim Agents Chemoth. 2003;47:371–374.
  • Sauermann R, Karch R, Langenberger H, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antim Agents Chemoth. 2005;49:4448–4454.
  • Petsch M, Mayer-Helm BX, Sauermann R, et al. Determination of fosfomycin in pus by capillary zone electrophoresis. J Chromatogr. 2005;1081:55–59.
  • Inouye S, Watanabe T, Tsuruoka T, et al. An increase in the antimicrobial activity in vitro of fosfomycin under anaerobic conditions. J Antimicrob Chemother. 1989;24:657–666.
  • Lewis PO, Heil E, Covert KC, et al. Treatment strategies for persistent methicillin-resistant Staphylococcus aureus bacteraemia. J Clin Pharm Ther. 2018;00:1–12.
  • Garcia-de-la-Mari C, Gasch O, Garcia-Gonzalez J, et al. The combination of daptomycin plus fosfomycin has synergistic, potent, and rapid bactericidal activity against Methicillin-Resistant Staphylococcus aureus (MRSA) in a rabbit model of Experimental Endocarditis(EE). Antim Agents Chemoth. 2018;62. DOI:10.1128/AAC.02633-17
  • Falagas ME, Giannopoulou KP, Kokolakis GN, et al. Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis. 2008;46:1069–1077.
  • Rosso-Fernández C, Sojo-Dorado J, Barriga A, et al. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): study protocol for an investigator-driven randomised controlled trial. BMJ Open. 2015;5:e007363.
  • Kaye KS et al. Intravenous fosfomycin (ZT-01) for the treatment of complicated urinary tract infections (cUTI) including acute pyelonephritis (AP): results from a multi-center, randomised, double-blind phase 2/3 study in hospitalized adults (ZEUS), Poster 1845, presented at ID Week 2017
  • Dinh A, Salomon J, Bru JP, et al. Fosfomycin: efficacy against infections caused by multidrug-resistant bacteria. Scand J Infect Dis. 2012;44:182–189.
  • Apisarnthanarak A, Mundy LM. Use of high-dose 4-hour infusion of doripenem, in combination with fosfomycin, for treatment of carbapenem-resistant Pseudomonas aeruginosa pneumonia. Clin Infect Dis. 2010;51(11):1351–1352.
  • Apisarnthanarak A, Mundy LM. Carbapenem-resistant Pseudomonas aeruginosa pneumonia with intermediate minimum inhibitory concentrations to doripenem: combination therapy with high-dose, 4-h infusion of doripenem plus fosfomycin versus intravenous colistin plus fosfomycin. Int J Antimicrob Agents. 2012;39:271–272.
  • Khawcharoenporn T, Chuncharunee A, Maluangnon C, et al. Active monotherapy and combination therapy for extensively drug-resistant Pseudomonas aeruginosa pneumonia. Int J Antimicrob Agents. 2018 Sep 17;pii:S0924–8579(18)30267-X.
  • Pontikis K, Karaiskos I, Bastani S, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase producing gram-negative bacteria. Int J Antimicrob Agents. 2014;43:52–59.
  • Michalopoulos A, Virtzili S, Rafailidis P, et al. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect. 2010;16(2):184–186.
  • Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemoth. 2014;58(9):5598–5601.
  • Santimaleeworagun W, Wongpoowarak P, Chayakul P, et al. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J Trop Med Public Health. 2011;42(4):890–900.
  • Infectopharm Arzneimittel GmbH; INPADS GmbH. Fosfomycin i.v. for treatment of severely infected patients. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000. [cited 2019 Jan 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT02979951NLMIdentifier:NCT02979951
  • Fundación Pública Andaluza para la gestión de la Investigación en Sevilla; Spanish Network for Research in Infectious Diseases. Fosfomycin versus meropenem or ceftriaxone in bacteriemic infections caused by multidrug resistance in E. Coli. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000. [cited 2019 Jan 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT02142751NLM Identifier:NCT02142751
  • Pro-Implant Foundation; Charite University, Berlin, Germany. Efficacy and safety of intravenous fosfomycin in prosthetic joint infection. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000. [cited 2019 Jan 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT03260010NLMIdentifier:NCT03260010
  • Drugs for Neglected Diseases; KEMRI-Wellcome Trust Collaborative Research Program University of Oxford. Intravenous and oral fosfomycin in hospitalised neonates with clinical sepsis. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000. [cited 2019 Jan 18]. Available from: https://clinicaltrials.gov/ct2/show/NCT03453177NLMIdentifier:NCT03453177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.