1,049
Views
24
CrossRef citations to date
0
Altmetric
Review

An overview of nanotechnology-based treatment approaches against Helicobacter Pylori

, , , &
Pages 829-840 | Received 09 Aug 2019, Accepted 04 Oct 2019, Published online: 16 Oct 2019

References

  • Sutton P, Mitchell H. Helicobacter pylori in the 21st Century. Vol. 17. CABI; 2010:1–12.
  • Megraud F, Coenen S, Versporten A, et al. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut. 2013;62(1):34–42.
  • Lopes D, Nunes C, Martins MCL, et al. Eradication of Helicobacter pylori: past, present and future. J Control Release. 2014;189:169–186.
  • Bagirova M, Allahverdiyev AM, Abamor ES, et al. An overview of challenges to eradication of Helicobacter pylori infection and future prospects. Eur Rev Med Pharmacol Sci. 2017;21(9):2199–2219.
  • Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006;19(3):449–490.
  • Alba C, Blanco A, Alarcón T. Antibiotic resistance in Helicobacter pylori. Curr Opin Infect Dis. 2017;30(5):489–497.
  • Chey WD, Leontiadis GI, Howden CW, et al. ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol. 2017;112(2):212–239.
  • Den Hoed CM, Vila AJ, Holster IL, et al. Helicobacter pylori and the birth cohort effect: evidence for stabilized colonization rates in childhood. Helicobacter. 2011;16(5):405–409.
  • Porras C, Nodora J, Sexton R, et al. Epidemiology of Helicobacter pylori infection in six Latin American countries (SWOG Trial S0701). Cancer Causes Control. 2013;24(2):209–215.
  • Bastos J, Carreira H, La Vecchia C, et al. Childcare attendance and Helicobacter pylori infection: systematic review and meta-analysis. Eur J Cancer Prev. 2013;22(4):311–319.
  • Malaty HM. Epidemiology of Helicobacter pylori infection. Best Pract Res Clin Gastroenterol. 2007;21(2):205–214.
  • Dorji D, Dendup T, Malaty HM, et al. Epidemiology of helicobacter pylori in Bhutan: The role of environment and geographic location. Helicobacter. 2014;19(1):69–73.
  • Iwańczak BM, Buchner AM, Iwańczak F. Clinical differences of Helicobacter pylori infection in children. Adv Clin Exp Med. 2017;26(7):1131–1136.
  • Hu Y, Zhu Y, Lu N-H. Primary antibiotic resistance of Helicobacter pylori in China. Dig Dis Sci. 2017;62(5):1146–1154.
  • Ghotaslou R, Leylabadlo HE, Asl YM. Prevalence of antibiotic resistance in Helicobacter pylori: A recent literature review. World J Methodol. 2015;5(3):164.
  • Bazzoli F, Zagari RM, Fossi S, et al. Short-term low-dose triple therapy for the eradication of Helicobacter pylori. Eur J Gastroenterol Hepatol. 1994;6(9):773–778.
  • Gumurdulu Y, Serin E, Özer B, et al. Low eradication rate of Helicobacter pylori with triple 7-14 days and quadriple therapy in Turkey. World J Gastroenterol. 2004;10(5):668.
  • McColl KE. Helicobacter pylori infection. N Engl J Med. 2010;362(17):1597–1604.
  • Gisbert JP. “Rescue” regimens after Helicobacter pylori treatment failure. World J Gastroenterol. 2008;14(35):5385.
  • Fallone CA, Chiba N, van Zanten SV, et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology. 2016;151(1): 51–69. e14.
  • Sun Q, Liang X, Zheng Q, et al. High efficacy of 14 day triple therapy based, bismuth containing quadruple therapy for initial Helicobacter pylori eradication. Helicobacter. 2010;15(3):233–238.
  • Saad RJ, Schoenfeld P, Kim HM, et al. Levofloxacin-based triple therapy versus bismuth-based quadruple therapy for persistent Helicobacter pylori infection: a meta-analysis. Am J Gastroenterol. 2006;101(3):488.
  • Meyer JM, Silliman NP, Wang W, et al. Risk factors for Helicobacter pylori resistance in the United States: the surveillance of H. pylori antimicrobial resistance partnership (SHARP) study, 1993–1999. Ann Intern Med. 2002;136(1):13–24.
  • Duck WM, Sobel J, Pruckler JM, et al. Antimicrobial resistance incidence and risk factors among Helicobacter pylori–infected persons, United States. Emerg Infect Dis. 2004;10(6):1088–1094.
  • Kobayashi I, Murakami K, Kato M, et al. Changing antimicrobial susceptibility epidemiology of Helicobacter pylori strains in Japan between 2002 and 2005. J Clin Microbiol. 2007;45(12):4006–4010.
  • Morilla AM, Álvarez-Argüelles ME, Duque JM, et al. Primary antimicrobial resistance rates and prevalence of Helicobacter pylori infection in the north of Spain. A 13-year retrospective study. Gastroenterologia y hepatologia; 2019;42(8):476–485.
  • Thung I, Aramin H, Vavinskaya V, et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther. 2016;43(4):514–533.
  • Mosites E, Bruden D, Morris J, et al. Antimicrobial resistance among Helicobacter pylori isolates in Alaska, 2000–2016. J Glob Antimicrob Resist. 2018;15:148–153.
  • Dang BN, Graham DY. Helicobacter pylori infection and antibiotic resistance: a WHO high priority? Nat Clin Pract Gastroenterol Hepatol. 2017;14(7):383.
  • Aygül A. The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance. Mikrobiyoloji Bulteni. 2015;49(2):278–291.
  • Kristiansen J, Thomsen VF, Martins A, et al. Non-antibiotics reverse resistance of bacteria to antibiotics. In Vivo. 2010;24(5):751–754.
  • Li P, Chen X, Shen Y, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release. 2019;300:52–63.
  • Holten KB. Appropriate prescribing of oral beta-lactam antibiotics. Am Fam Physician. 2000;62(3).
  • Bayerdorffer E, Mannes GA, Sommer A, et al. High dose omeprazole treatment combined with amoxicillin eradicates Helicobacter pylori. Eur J Gastroenterol Hepatol. 1992;4(9):697–702.
  • Nishizawa T, Maekawa T, Watanabe N, et al. Clarithromycin versus metronidazole as first-line helicobacter pylori eradication. J Clin Gastroenterol. 2015;49(6):468–471.
  • Yilmaz Ö, Demiray E. Clinical role and importance of fluorescence in situ hybridization method in diagnosis of H pylori infection and determination of clarithromycin resistance in H pylori eradication therapy. World J Gastroenterol. 2007;13(5):671.
  • Goodwin A, Kersulyte D, Sisson G, et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen‐insensitive NADPH nitroreductase. Mol Microbiol. 1998;28(2):383–393.
  • Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–573.
  • Bhatia S Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems. Springer, Cham; 2016. p. 33–93.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2017.
  • Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65(1):21–23.
  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289.
  • Lotfipour F, Valizadeh H, Milani M, et al. Study of antimicrobial effects of clarithromycin loaded PLGA nanoparticles against clinical strains of Helicobacter pylori. Drug Res (Stuttg). 2016;66(1):41–45.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–515.
  • Kroll AV, Fang RH, Zhang L. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem. 2016;28(1):23–32.
  • Mody VV, Gupta H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282.
  • Luo J, Chan W-B, Wang L, et al. Probing interfacial interactions of bacteria on metal nanoparticles and substrates with different surface properties. Int J Antimicrob Agents. 2010;36(6):549–556.
  • Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21(21):9651–9659.
  • Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–1815.
  • Amin M, Hameed S, Ali A, et al. Green synthesis of silver nanoparticles: structural features and in vivo and in vitro therapeutic effects against Helicobacter pylori induced gastritis. Bioinorg Chem Appl. 2014;2014.
  • Amin M, Anwar F, Janjua MRSA, et al. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci. 2012;13(8):9923–9941.
  • Dreaden EC, Alkilany AM, Huang X, et al. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–2779.
  • Cui Y, Zhao Y, Tian Y, et al. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327–2333.
  • Gopinath V, Priyadarshini S, MubarakAli D, et al. Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arabian journal of chemistry. 2016.
  • Li JJ, Hartono D, Ong C-N, et al. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials. 2010;31(23):5996–6003.
  • Pan Y, Neuss S, Leifert A, et al. Size‐dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–1949.
  • Lopes TS, Alves GG, Pereira MR, et al. Advances and potential application of gold nanoparticles in nanomedicine. J Cell Biochem. 2019.
  • Xie Y, He Y, Irwin PL, et al. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325–2331.
  • Reddy KM, Feris K, Bell J, et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007;90(21):213902.
  • Chakraborti S, Bhattacharya S, Chowdhury R, et al. The molecular basis of inactivation of metronidazole-resistant Helicobacter pylori using polyethyleneimine functionalized zinc oxide nanoparticles. PLoS One. 2013;8(8):e70776.
  • Ahamed M, AlSalhi MS, Siddiqui M. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.
  • Gurunathan S, Jeong J-K, Han JW, et al. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett. 2015;10(1):35.
  • Saravanakumar K, Chelliah R, MubarakAli D, et al. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep. 2019;9(1):5787.
  • Prasad A, Baker S, Nagendra Prasad MN, et al. Phytogenic synthesis of silver nanobactericides for anti-biofilm activity against human pathogen H. pylori. SN Appl Sci. 2019;1(4):341.
  • Chen R, Cheng G, So MH, et al. Bismuth subcarbonate nanoparticles fabricated by water-in-oil microemulsion-assisted hydrothermal process exhibit anti-Helicobacter pylori properties. Mater Res Bull. 2010;45(5):654–658.
  • Nazari P, Dowlatabadi-Bazaz R, Mofid MR, et al. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol. 2014;172(2):570–579.
  • Alavi M, Karimi N, Valadbeigi T. Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng. 2019;5(9):4228–4243.
  • Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Front Microbiol. 2018;9.
  • Alavi M, Rai M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti Infect Ther. 2019;17(6):419–428.
  • Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020–4028.
  • Ansari MA, Khan HM, Khan AA, et al. Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Basic Microbiol. 2014;54(9):905–915.
  • Joost U, Juganson K, Visnapuu M, et al. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B Biol. 2015;142:178–185.
  • Li YF, Chen C. Fate and toxicity of metallic and metal‐containing nanoparticles for biomedical applications. Small. 2011;7(21):2965–2980.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–20):(1–2): p.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666.
  • Gao W, Thamphiwatana S, Angsantikul P, et al. Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(6):532–547.
  • Zhang L, Radovic-Moreno A, Alexis F, et al. Codelivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. Chem Med Chem. 2007;2(9):1268–1271.
  • Chan JM, Zhang L, Yuet KP, et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627–1634.
  • Valizadeh H, Mohammadi G, Ehyaei R, et al. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Die Pharmazie- Int J Pharm Sci. 2012;67(1):63–68.
  • Pimienta C, Chouinard F, Labib A, et al. Effect of various poloxamer coatings on in vitro adhesion of isohexylcyanoacrylate nanospheres to rat ileal segments under liquid flow. Int J Pharm. 1992;80(1–3):1–8.
  • Fontana G, Licciardi M, Mansueto S, et al. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials. 2001;22(21):2857–2865.
  • Donev R. Protein and peptide nanoparticles for drug delivery. Vol. 98. Academic Press; 2015;294–317.
  • Ramteke S, Jain NK. Clarithromycin-and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. J Drug Target. 2008;16(1):65–72.
  • Arangoa M, Ponchel G, Orecchioni AM, et al. Bioadhesive potential of gliadin nanoparticulate systems. Eur J Pharm Sci. 2000;11(4):333–341.
  • Umamaheshwari R, Jain N. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. J Drug Target. 2003;11(7):415–424.
  • Rudnik E Compostable polymer properties and packaging applications. In: Plastic Films in Food Packaging. Elsevier; 2013. p. 217–248.
  • Pan-In P, Banlunara W, Chaichanawongsaroj N, et al. Ethyl cellulose nanoparticles: clarithomycin encapsulation and eradication of H. pylori. Carbohydr Polym. 2014;109:22–27.
  • Xiong M-H, Bao Y, Yang X-Z, et al. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63–76.
  • Neouze M-A, Schubert U. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte Für Chemie-Chemical Monthly. 2008;139(3):183–195.
  • Baraton M-I. Synthesis, functionalization and surface treatment of nanoparticles. Amer Scientific Pub; 2003;161–171.
  • Moon J, Shul YG, Han HS, et al. A study on UV-curable adhesives for optical pick-up: I. Photo-initiator effects. Int J Adhes Adhes. 2005;25(4):301–312.
  • Luo M, Jia -Y-Y, Jing Z-W, et al. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids Surf B Biointerfaces. 2018;164:11–19.
  • Lin Y-H, Tsai S-C, Lai C-H, et al. Genipin-cross-linked fucose–chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials. 2013;34(18):4466–4479.
  • Lin Y-H, Lin J-H, Chou S-C, et al. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study. Nanomedicine. 2015;10(1):57–71.
  • Arif M, Dong Q-J, Raja MA, et al. Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori. Mater Sci Eng C. 2018;83:17–24.
  • Arora S, Bisen G, Budhiraja R. Mucoadhesive and muco-penetrating delivery systems for eradication of Helicobacter pylori. Asian J Pharm (AJP). 2014;6(1):18–30.
  • Narain A, Asawa S, Chhabria V, et al. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine. 2017;12(21):2677–2692.
  • Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220:600–607.
  • Pang Z, Hu C-MJ, Fang RH, et al. Detoxification of organophosphate poisoning using nanoparticle bioscavengers. ACS Nano. 2015;9(6):6450–6458.
  • Wei X, Gao J, Fang RH, et al. Nanoparticles camouflaged in platelet membrane coating as an antibody decoy for the treatment of immune thrombocytopenia. Biomaterials. 2016;111:116–123.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760.
  • Hu C-MJ, Zhang L, Aryal S, et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Nat Acad Sci. 2011;108(27):10980–10985.
  • Zhang J, Gao W, Fang RH, et al. Synthesis of nanogels via cell membrane templated polymerization. Small. 2015;11(34):4309–4313.
  • Luk BT, Fang RH, Hu C-MJ, et al. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics. 2016;6(7):1004–1011.
  • Rao L, Dávila N, Ge N, et al. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology. 2016;27(8):085106.
  • Xuan M, Shao J, Dai L, et al. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interfaces. 2016;8(15):9610–9618.
  • Sun H, Su J, Meng Q, et al. Cancer cell biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater. 2016;28(43):9581–9588.
  • Angsantikul P, Thamphiwatana S, Zhang Q, et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against helicobacter pylori infection. Adv Ther. 2018;1(2):1800016.
  • Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015;23(7–8):619–626.
  • Gao C, Lin Z, Jurado-Sánchez B, et al. Stem cell membrane coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small. 2016;12(30):4056–4062.
  • Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015;15(2):1403–1409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.