972
Views
52
CrossRef citations to date
0
Altmetric
Review

Stenotrophomonas maltophilia biofilm: its role in infectious diseases

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 877-893 | Received 22 Aug 2019, Accepted 24 Oct 2019, Published online: 01 Nov 2019

References

  • Looney WJ. Role of Stenotrophomonas maltophilia in hospital-acquired infection. Br J Biomed Sci. 2005;62(3):145–154; quiz 1 p following 54.
  • Nyc O, Matejkova J. Stenotrophomonas maltophilia: significant contemporary hospital pathogen - review. Folia Microbiol (Praha). 2010;55(3):286–294.
  • Chang YT, Lin CY, Chen YH, et al. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol. 2015;6:893.
  • Adegoke AA, Stenstrom TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol. 2017;8:2276.
  • Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev Anti Infect Ther. 2014;12(1):1–4.
  • Huedo P, Coves X, Daura X, et al. Quorum sensing signaling and quenching in the multidrug-resistant pathogen Stenotrophomonas maltophilia. Front Cell Infect Microbiol. 2018;8:122.
  • Trifonova A, Strateva T. Stenotrophomonas maltophilia - a low-grade pathogen with numerous virulence factors. Infect Dis (Lond). 2019;51(3):168–178.
  • Kalidasan V, Joseph N, Kumar S, et al. Iron and virulence in Stenotrophomonas maltophilia: all we know so far. Front Cell Infect Microbiol. 2018;8:401.
  • Gales AC, Seifert H, Gur D, et al. Antimicrobial susceptibility of acinetobacter calcoaceticus-acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY antimicrobial surveillance program (1997–2016). Open Forum Infect Dis. 2019;6(Suppl 1):S34–S46.
  • Willsey GG, Eckstrom K, LaBauve AE, et al. Stenotrophomonas maltophilia differential gene expression in synthetic cystic fibrosis sputum reveals shared and cystic fibrosis strain-specific responses to the sputum environment. J Bacteriol. 2019;201 (15) e00074–19.
  • World Health Organization. Public health importance of antimicrobial resistance. 2019 May 30.
  • Zhanel GG, Golden AR, Zelenitsky S, et al. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs. 2019;79(3):271–289.
  • Lin YT, Huang YW, Liou RS, et al. MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J Antimicrob Chemother. 2014;69(12):3221–3226.
  • Pompilio A, Crocetta V, Verginelli F, et al. In vitro activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia lifestyles under conditions relevant to pulmonary infection in cystic fibrosis, and relationship with SmeDEF multidrug efflux pump expression. FEMS Microbiol Lett. 2016;363(14). pii: fnw145.
  • McKay GA, Woods DE, MacDonald KL, et al. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun. 2003;71(6):3068–3075.
  • Pompilio A, Pomponio S, Crocetta V, et al. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol. 2011;11:159.
  • Zhuo C, Zhao QY, Xiao SN. The impact of spgM, rpfF, rmlA gene distribution on biofilm formation in Stenotrophomonas maltophilia. PLoS One. 2014;9(10):e108409.
  • Madi H, Lukic J, Vasiljevic Z, et al. Genotypic and phenotypic characterization of Stenotrophomonas maltophilia strains from a pediatric tertiary care hospital in Serbia. PLoS One. 2016;11(10):e0165660.
  • Bostanghadiri N, Ghalavand Z, Fallah F, et al. Characterization of phenotypic and genotypic diversity of Stenotrophomonas maltophilia strains isolated from selected hospitals in Iran. Front Microbiol. 2019;10:1191.
  • Huang TP, Somers EB, Wong AC. Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia. J Bacteriol. 2006;188(8):3116–3120.
  • de Oliveira-garcia D, Dall’Agnol M, Rosales M, et al. Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol. 2003;5(9):625–636.
  • Crossman LC, Gould VC, Dow JM, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008;9(4):R74.
  • Gallo SW, Figueiredo TP, Bessa MC, et al. Isolation and characterization of Stenotrophomonas maltophilia isolates from a Brazilian hospital. Microb Drug Resist. 2016;22(8):688–695.
  • Nicoletti M, Iacobino A, Prosseda G, et al. Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants. Int J Med Microbiol. 2011;301(1):34–43.
  • Ryan RP, Monchy S, Cardinale M, et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol. 2009;7(7):514–525.
  • de Oliveira-garcia D, Dall’Agnol M, Rosales M, et al. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerg Infect Dis. 2002;8(9):918–923.
  • Kang XM, Wang FF, Zhang H, et al. Genome-wide identification of genes necessary for biofilm formation by nosocomial pathogen Stenotrophomonas maltophilia reveals that orphan response regulator FsnR is a critical modulator. Appl Environ Microbiol. 2015;81(4):1200–1209.
  • Liu W, Tian XQ, Wei JW, et al. BsmR degrades c-di-GMP to modulate biofilm formation of nosocomial pathogen Stenotrophomonas maltophilia. Sci Rep. 2017;7(1):4665.
  • Di Bonaventura G, Prosseda G, Del Chierico F, et al. Molecular characterization of virulence determinants of Stenotrophomonas maltophilia strains isolated from patients affected by cystic fibrosis. Int J Immunopathol Pharmacol. 2007;20(3):529–537.
  • Roscetto E, Angrisano T, Costa V, et al. Functional characterization of the RNA chaperone Hfq in the opportunistic human pathogen Stenotrophomonas maltophilia. J Bacteriol. 2012;194(21):5864–5874.
  • Yang JG, Shih MS, Kuo WT, et al. Crystallization of the N-terminal regulatory domain of the enhancer-binding protein FleQ from Stenotrophomonas maltophilia. Acta Crystallogr F Struct Biol Commun. 2014;70(Pt 3):326–330.
  • Lin YT, Huang YW, Chen SJ, et al. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob Agents Chemother. 2015;59(7):4067–4073.
  • Burmolle M, Ren D, Bjarnsholt T, et al. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. 2014;22(2):84–91.
  • Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 2004;236(2):163–173.
  • Sharahi JY, Azimi T, Shariati A, et al. Advanced strategies for combating bacterial biofilms. J Cell Physiol. 2019;234:14689–14708.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–193.
  • Hoiby N, Ciofu O, Johansen HK, et al. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011;3(2):55–65.
  • Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol. 2012;7(9):1061–1072.
  • Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015;34(5):877–886.
  • An SQ, Tang JL. Diffusible signal factor signaling regulates multiple functions in the opportunistic pathogen Stenotrophomonas maltophilia. BMC Res Notes. 2018;11(1):569.
  • Ryan RP, Fouhy Y, Garcia BF, et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in pseudomonas aeruginosa. Mol Microbiol. 2008;68(1):75–86.
  • An SQ, Berg G. Stenotrophomonas maltophilia. Trends Microbiol. 2018;26(7):637–638.
  • Ryan RP, An SQ, Allan JH, et al. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog. 2015;11(7):e1004986.
  • Fouhy Y, Scanlon K, Schouest K, et al. Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol. 2007;189(13):4964–4968.
  • Fouhy Y, Scanlon K, Schouest K, et al.; Retraction for Fouhy et al., Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol. 2018;200(12). pii: e00235–18.
  • Alcaraz E, Garcia C, Friedman L, et al. The rpf/DSF signalling system of Stenotrophomonas maltophilia positively regulates biofilm formation, production of virulence-associated factors and beta-lactamase induction. FEMS Microbiol Lett. 2019;366(6). pii: fnz069.
  • Garcia CA, Alcaraz ES, Franco MA. Passerini de Rossi BN. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front Microbiol. 2015;6:926.
  • Huedo P, Yero D, Martinez-Servat S, et al. Two different rpf clusters distributed among a population of Stenotrophomonas maltophilia clinical strains display differential diffusible signal factor production and virulence regulation. J Bacteriol. 2014;196(13):2431–2442.
  • Huedo P, Yero D, Martinez-Servat S, et al. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia. Front Microbiol. 2015;6:761.
  • Zheng L, Wang FF, Ren BZ, et al. Systematic mutational analysis of histidine kinase genes in the nosocomial pathogen Stenotrophomonas maltophilia Identifies BfmAK system control of biofilm development. Appl Environ Microbiol. 2016;82(8):2444–2456.
  • Lee SW, Han SW, Sririyanum M, et al. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science. 2009;326(5954):850–853.
  • McCarthy Y, Dow JM, Ryan RP. The Ax21 protein is a cell-cell signal that regulates virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol. 2011;193(22):6375–6378.
  • Han SW, Sriariyanun M, Lee SW, et al. Small protein-mediated quorum sensing in a Gram-negative bacterium. PLoS One. 2011;6(12):e29192.
  • Lee SW, Han SW, Sririyanum M, et al. Retraction. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science. 2013;342(6155):191.
  • Retraction: Small protein-mediated quorum sensing in a gram-negative bacterium. PLoS One. 2013;8(9). DOI: 10.1371/annotation/880a72e1-9cf3-45a9-bf1c-c74ccb73fd35.
  • McCarthy Y, Dow JM, Ryan RP. Retraction for McCarthy et al., The Ax21 protein is a cell-cell signal that regulates virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol. 2017;199(10). pii: e00156–17.
  • Bahar O, Pruitt R, Luu DD, et al. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. PeerJ. 2014;2:e242.
  • Devos S, Van Oudenhove L, Stremersch S, et al. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front Microbiol. 2015;6:298.
  • An SQ, Tang JL. The Ax21 protein influences virulence and biofilm formation in Stenotrophomonas maltophilia. Arch Microbiol. 2018;200(1):183–187.
  • Martinez P, Huedo P, Martinez-Servat S, et al. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839). Front Cell Infect Microbiol. 2015;5:41.
  • Jucker BA, Harms H, Zehnder AJ. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J Bacteriol. 1996;178(18):5472–5479.
  • Pompilio A, Crocetta V, Confalone P, et al. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 2010;10:102.
  • Zgair AK, Chhibber S. Adhesion of Stenotrophomonas maltophilia to mouse tracheal mucus is mediated through flagella. J Med Microbiol. 2011;60(Pt 7):1032–1037.
  • Zgair AK, Ghafil JA, Radif HM, et al. Moxifloxacin reduces Stenotrophomonas maltophilia adhesion to mouse intestinal tract in vitro. Pak J Pharm Sci. 2017;30(5):1753–1757.
  • De Vidipo LA, De Marques EA, Puchelle E, et al. Stenotrophomonas maltophilia interaction with human epithelial respiratory cells in vitro. Microbiol Immunol. 2001;45(8):563–569.
  • Tan CK, Liaw SJ, Yu CJ, et al. Extensively drug-resistant Stenotrophomonas maltophilia in a tertiary care hospital in Taiwan: microbiologic characteristics, clinical features, and outcomes. Diagn Microbiol Infect Dis. 2008;60(2):205–210.
  • Alcaraz E, Garcia C, Papalia M, et al. Stenotrophomonas maltophilia isolated from patients exposed to invasive devices in a university hospital in Argentina: molecular typing, susceptibility and detection of potential virulence factors. J Med Microbiol. 2018;67:992–1002.
  • Flores-Trevino S, Gutierrez-Ferman JL, Morfin-Otero R, et al. Stenotrophomonas maltophilia in Mexico: antimicrobial resistance, biofilm formation and clonal diversity. J Med Microbiol. 2014;63(Pt 11):1524–1530.
  • Steinmann J, Mamat U, Abda EM, et al. Analysis of phylogenetic variation of Stenotrophomonas maltophilia reveals human-specific branches. Front Microbiol. 2018;9:806.
  • Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554.
  • Waharte F, Steenkeste K, Briandet R, et al. Diffusion measurements inside biofilms by image-based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope. Appl Environ Microbiol. 2010;76(17):5860–5869.
  • Pompilio A, Piccolomini R, Picciani C, et al. Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett. 2008;287(1):41–47.
  • Passerini de Rossi B, Calenda M, Vay C, et al. Biofilm formation by Stenotrophomonas maltophilia isolates from device-associated nosocomial infections. Rev Argent Microbiol. 2007;39(4):204–212.
  • Cescutti P, Cuzzi B, Liut G, et al. A novel highly charged exopolysaccharide produced by two strains of Stenotrophomonas maltophilia recovered from patients with cystic fibrosis. Carbohydr Res. 2011;346(13):1916–1923.
  • Keegan R, Waterman DG, Hopper DJ, et al. The 1.1 A resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire protein data bank. Acta Crystallogr D Struct Biol. 2016;72(Pt 8):933–943.
  • Di Bonaventura G, Stepanovic S, Picciani C, et al. Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol (Praha). 2007;52(1):86–90.
  • Zgair AK, Chhibber S. Adhering ability of Stenotrophomonas maltophilia is dependent on growth conditions. Mikrobiologiia. 2011;80(4):459–464.
  • Biocanin M, Madi H, Vasiljevic Z, et al. Temperature, pH and trimethoprim-sulfamethoxazole are potent inhibitors of biofilm formation by Stenotrophomonas maltophilia clinical isolates. Pol J Microbiol. 2017;66(4):433–438.
  • Di Bonaventura G, Spedicato I, D’Antonio D, et al. Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother. 2004;48(1):151–160.
  • Wang A, Wang Q, Kudinha T, et al. Effects of Fluoroquinolones and azithromycin on biofilm formation of Stenotrophomonas maltophilia. Sci Rep. 2016;6:29701.
  • Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36(5):990–1004.
  • Burmolle M, Webb JS, Rao D, et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72(6):3916–3923.
  • Elvers KT, Leeming K, Lappin-Scott HM. Binary culture biofilm formation by Stenotrophomonas maltophilia and Fusarium oxysporum. J Ind Microbiol Biotechnol. 2001;26(3):178–183.
  • Pompilio A, Crocetta V, De Nicola S, et al. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front Microbiol. 2015;6:951.
  • Melloul E, Luiggi S, Anais L, et al. Characteristics of aspergillus fumigatus in association with Stenotrophomonas maltophilia in an in vitro model of mixed biofilm. PLoS One. 2016;11(11):e0166325.
  • Melloul E, Roisin L, Durieux MF, et al. Interactions of Aspergillus fumigatus and Stenotrophomonas maltophilia in an in vitro Mixed Biofilm Model: does the Strain Matter? Front Microbiol. 2018;9:2850.
  • de Rossi BP, Garcia C, Alcaraz E, et al. Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth. Rev Argent Microbiol. 2014;46(4):288–297.
  • Ciofu O, Rojo-Molinero E, Macia MD, et al. Antibiotic treatment of biofilm infections. APMIS. 2017;125(4):304–319.
  • Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16(1):51–65.
  • Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25(1):2–41.
  • Ciofu O, Tolker-Nielsen T, Jensen PO, et al. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.
  • Pompilio A, Crocetta V, Ghosh D, et al. Stenotrophomonas maltophilia phenotypic and genotypic diversity during a 10-year colonization in the lungs of a cystic fibrosis patient. Front Microbiol. 2016;7:1551.
  • Wu K, Yau YC, Matukas L, et al. Biofilm compared to conventional antimicrobial susceptibility of Stenotrophomonas maltophilia Isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2013;57(3):1546–1548.
  • Macia MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 2014;20(10):981–990.
  • Algburi A, Comito N, Kashtanov D, et al. Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol. 2017;83(3).pii: e02508–16.
  • Di Bonaventura G, Pompilio A, Crocetta V, et al. Exposure to extremely low-frequency magnetic field affects biofilm formation by cystic fibrosis pathogens. Future Microbiol. 2014;9(12):1303–1317.
  • Halstead FD, Thwaite JE, Burt R, et al. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Appl Environ Microbiol. 2016;82(13):4006–4016.
  • Pompilio A, Geminiani C, Bosco D, et al. Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of pseudomonas aeruginosa and other cystic fibrosis-associated bacterial pathogens. Front Microbiol. 2018;9:1349.
  • Cremonini E, Zonaro E, Donini M, et al. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol. 2016;9(6):758–771.
  • Cremonini E, Boaretti M, Vandecandelaere I, et al. Biogenic selenium nanoparticles synthesized by Stenotrophomonas maltophilia SeITE02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microb Biotechnol. 2018;11(6):1037–1047.
  • Zonaro E, Lampis S, Turner RJ, et al. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol. 2015;6:584.
  • Gomes IB, Simoes M, Simoes LC. The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. Sci Total Environ. 2016;565:40–48.
  • Pollini S, Di Pilato V, Landini G, et al. In vitro activity of N-acetylcysteine against Stenotrophomonas maltophilia and Burkholderia cepacia complex grown in planktonic phase and biofilm. PLoS One. 2018;13(10):e0203941.
  • Kregiel D, Rygala A, Kolesinska B, et al. Antimicrobial and Antibiofilm N-acetyl-L-cysteine grafted siloxane polymers with potential for use in water systems. Int J Mol Sci. 2019;20(8):2011.
  • Ciacci N, Boncompagni S, Valzano F, et al. In vitro synergism of colistin and N-acetylcysteine against Stenotrophomonas maltophilia. Antibiotics (Basel). 2019;8(3).pii: E101.
  • Gomes IB, Querido MM, Teixeira JP, et al. Prolonged exposure of Stenotrophomonas maltophilia biofilms to trace levels of clofibric acid alters antimicrobial tolerance and virulence. Chemosphere. 2019;235:327–335.
  • Pompilio A, Crocetta V, Scocchi M, et al. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed alpha-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol. 2012;12:145.
  • Pompilio A, Scocchi M, Pomponio S, et al. Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides. 2011;32(9):1807–1814.
  • Karunanidhi A, Thomas R, van Belkum A, et al. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. Biomed Res Int. 2013;2013:392058.
  • Vidigal PG, Musken M, Becker KA, et al. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm. PLoS One. 2014;9(4):e92876.
  • Karunanidhi A, Ghaznavi-Rad E, Hamat RA, et al. Antibacterial and antibiofilm activities of nonpolar extracts of allium stipitatum regel. against multidrug resistant bacteria. Biomed Res Int. 2018;2018:9845075.
  • Kim HR, Lee D, Eom YB. Anti-biofilm and anti-virulence efficacy of celastrol against Stenotrophomonas maltophilia. Int J Med Sci. 2018;15(6):617–627.
  • Chanyi RM, Koval SF, Brooke JS. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus. Environ Microbiol Rep. 2016;8(3):343–351.
  • Minardi D, Montanari MP, Tili E, et al. Effects of fluoroquinolones on bacterial adhesion and on preformed biofilm of strains isolated from urinary double J stents. J Chemother. 2008;20(2):195–201.
  • Passerini de Rossi B, Garcia C, Calenda M, et al. Activity of levofloxacin and ciprofloxacin on biofilms and planktonic cells of Stenotrophomonas maltophilia isolates from patients with device-associated infections. Int J Antimicrob Agents. 2009;34(3):260–264.
  • Passerini de Rossi B, Feldman L, Pineda MS, et al. Comparative in vitro efficacies of ethanol-, EDTA- and levofloxacin-based catheter lock solutions on eradication of Stenotrophomonas maltophilia biofilms. J Med Microbiol. 2012;61(Pt9):1248–1253.
  • Sun E, Liang G, Wang L, et al. Antimicrobial susceptibility of hospital acquired Stenotrophomonas maltophilia isolate biofilms. Braz J Infect Dis. 2016;20(4):365–373.
  • Pompilio A, Catavitello C, Picciani C, et al. Subinhibitory concentrations of moxifloxacin decrease adhesion and biofilm formation of Stenotrophomonas maltophilia from cystic fibrosis. J Med Microbiol. 2010;59(Pt 1):76–81.
  • Malinowski AM, McClarty BM, Robinson C, et al. Polysorbate 80 and polymyxin B inhibit Stenotrophomonas maltophilia biofilm. Diagn Microbiol Infect Dis. 2017;87(2):154–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.