589
Views
57
CrossRef citations to date
0
Altmetric
Review

Emergence of coagulase-negative staphylococci

ORCID Icon, , , &
Pages 349-366 | Received 31 Oct 2019, Accepted 13 Feb 2020, Published online: 02 Mar 2020

References

  • Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014 Oct;27(4):870–926.
  • Becker K, Schaumburg F, Kearns A, et al. Implications of identifying the recently defined members of the Staphylococcus aureus complex S. argenteus and S. schweitzeri: a position paper of members of the ESCMID study group for staphylococci and Staphylococcal diseases (ESGS). Clin Microbiol Infect. 2019 Sep;25(9):1064–1070.
  • Heilmann C, Ziebuhr W, Becker K. Are coagulase-negative staphylococci virulent? Clin Microbiol Infect. 2019 Sep;25(9):1071–1080.
  • Becker K, Pagnier I, Schuhen B, et al. Does nasal cocolonization by methicillin-resistant coagulase-negative staphylococci and methicillin-susceptible Staphylococcus aureus strains occur frequently enough to represent a risk of false-positive methicillin-resistant S. aureus determinations by molecular methods? J Clin Microbiol. 2006 Jan;44(1):229–231.
  • Kaspar U, Kriegeskorte A, Schubert T, et al. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol. 2016 Jul;18(7):2130–2142.
  • Rosenbach FJ. Micro-Organismen bei den Wund-Infections-Krankheiten des Menschen. Wiesbaden: J. F. Bergmann; 1884.
  • Welch WH. Conditions underlying the infection of wounds. Am J Med Sci. 1891;102(5):439–465.
  • Fairbrother RW. Coagulase production as a criterion for the classification of the staphylococci. J Pathol Bacteriol. 1940;50(1):83–88.
  • Rock M, Buntain BJ, Hatfield JM, et al. Animal-human connections, “one health,” and the syndemic approach to prevention. Soc Sci Med. 2009 Mar;68(6):991–995.
  • Hovelius B, Mårdh PA. Staphylococcus saprophyticus as a common cause of urinary tract infections. Rev Infect Dis. 1984 May-Jun;6(3):328–337.
  • Mortimer TD, Annis DS, O’Neill MB, et al. Adaptation in a fibronectin binding autolysin of Staphylococcus saprophyticus. mSphere. 2017 Nov–Dec;2(6):e00511-17.
  • Frank KL, Del Pozo JL, Patel R. From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev. 2008 Jan;21(1):111–133.
  • Herchline TE, Ayers LW. Occurrence of Staphylococcus lugdunensis in consecutive clinical cultures and relationship of isolation to infection. J Clin Microbiol. 1991 Mar;29(3):419–421.
  • Malhas AM, Lawton R, Reidy M, et al. Causative organisms in revision total hip & knee arthroplasty for infection: increasing multi-antibiotic resistance in coagulase-negative Staphylococcus and the implications for antibiotic prophylaxis. Surgeon. 2015 Oct;13(5):250–255.
  • Chen HC, Shieh CC, Sung JM. Increasing Staphylococcus species resistance in peritoneal dialysis-related peritonitis over a 10-year period in a single Taiwanese center. Perit Dial Int. 2018 Jul-Aug;38(4):266–270.
  • May L, Klein EY, Rothman RE, et al. Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrob Agents Chemother. 2014;58(3):1404–1409.
  • Fleer A, Verhoef J. New aspects of staphylococcal infections: emergence of coagulase-negative staphylococci as pathogens. Antonie Van Leeuwenhoek. 1984;50(5–6):729–744.
  • Refaat M, Zakka P, Khoury M, et al. Cardiac implantable electronic device infections: observational data from a tertiary care center in Lebanon. Medicine (Baltimore). 2019 Apr;98(16):e14906.
  • Blomfeldt R, Kasina P, Ottosson C, et al. Prosthetic joint infection following hip fracture and degenerative hip disorder: a cohort study of three thousand, eight hundred and seven consecutive hip arthroplasties with a minimum follow-up of five years. Int Orthop. 2015 Nov;39(11):2091–2096.
  • Pittet B, Montandon D, Pittet D. Infection in breast implants. S1473309905012818 pii. Lancet Infect Dis. 2005 Feb;5(2):94–106. .
  • Hidron AI, Edwards JR, Patel J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008 Nov;29(11):996–1011.
  • Ramanathan V, Chiu EJ, Thomas JT, et al. Healthcare costs associated with hemodialysis catheter-related infections: a single-center experience. Infect Control Hosp Epidemiol. 2007 May;28(5):606–609.
  • Parvizi J, Pawasarat IM, Azzam KA, et al. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplasty. 2010 Sep;25(6 Suppl):103–107.
  • Kurtz SM, Lau E, Watson H, et al. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012 Sep;27(8 Suppl):61–5 e1.
  • Morrison AJ Jr., Freer CV, Searcy MA, et al. Nosocomial bloodstream infections: secular trends in a statewide surveillance program in Virginia. Infect Control. 1986 Nov;7(11):550–553.
  • Stillman RI, Wenzel RP, Donowitz LC. Emergence of coagulase negative staphylococci as major nosocomial bloodstream pathogens. Infect Control. 1987 Mar;8(3):108–112.
  • Karchmer AW. Nosocomial bloodstream infections: organisms, risk factors, and implications. Clin Infect Dis. 2000 Sep;31(Suppl 4):S139–43.
  • Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004 Aug 1;39(3):309–317.
  • N’Guyen Y, Baumard S, Vernet-Garnier V, et al. Coagulase-negative Staphylococcus bacteraemia accounts for one third of Staphylococcus bacteraemia in a French university hospital. Scand J Infect Dis. 2012 Feb;44(2):79–85.
  • Cassini A, Plachouras D, Eckmanns T, et al. Burden of six healthcare-associated infections on european population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modelling study. PLoS Med. 2016 Oct;13(10):e1002150.
  • Gatermann SG, Koschinski T, Friedrich S. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect. 2007 Aug;13(8):777–781.
  • Méric G, Mageiros L, Pensar J, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun. 2018 Nov 28;9(1):5034.
  • Bizzarro MJ, Shabanova V, Baltimore RS, et al. Neonatal sepsis 2004-2013: the rise and fall of coagulase-negative staphylococci. J Pediatr. 2015 May;166(5):1193–1199.
  • Piening BC, Geffers C, Gastmeier P, et al. Pathogen-specific mortality in very low birth weight infants with primary bloodstream infection. PLoS One. 2017;12(6):e0180134.
  • Dimitriou G, Fouzas S, Giormezis N, et al. Clinical and microbiological profile of persistent coagulase-negative staphylococcal bacteraemia in neonates. Clin Microbiol Infect. 2011 Nov;17(11):1684–1690.
  • Ben Said M, Hays S, Bonfils M, et al. Late-onset sepsis due to Staphylococcus capitis ‘neonatalis’ in low-birthweight infants: a new entity? J Hosp Infect. 2016 Sep;94(1):95–98.
  • Butin M, Martins-Simões P, Rasigade JP, et al. Worldwide endemicity of a multidrug-resistant Staphylococcus capitis clone involved in neonatal sepsis. Emerg Infect Dis. 2017 Mar;23(3):538–539.
  • Butin M, Dumont Y, Monteix A, et al. Sources and reservoirs of Staphylococcus capitis NRCS-A inside a NICU. Antimicrob Resist Infect Control. 2019;8:157.
  • Mikulska M, Del Bono V, Viscoli C. Bacterial infections in hematopoietic stem cell transplantation recipients. Curr Opin Hematol. 2014 Nov;21(6):451–458.
  • Rosa RG, Dos Santos RP, Goldani LZ. Mortality related to coagulase-negative staphylococcal bacteremia in febrile neutropenia: A cohort study. Can J Infect Dis Med Microbiol. 2014 Spring;25(1):e14–7.
  • Reers Y, Idelevich EA, Pätkau H, et al. Multiplex PCR assay underreports true bloodstream infections with coagulase-negative staphylococci in hematological patients with febrile neutropenia. Diagn Microbiol Infect Dis. 2016 Aug;85(4):413–415.
  • Alonso-Valle H, Fariñas-Álvarez C, García-Palomo JD, et al. Clinical course and predictors of death in prosthetic valve endocarditis over a 20-year period. S0022-5223(09)00819-8 pii. J Thorac Cardiovasc Surg. 2010 Apr;139(4):887–893.
  • Hill EE, Herijgers P, Herregods MC, et al. Evolving trends in infective endocarditis. CLM1289 pii. Clin Microbiol Infect. 2006 Jan;12(1):5–12.
  • Chu VH, Miro JM, Hoen B, et al. Coagulase-negative staphylococcal prosthetic valve endocarditis–a contemporary update based on the international collaboration on endocarditis: prospective cohort study. Heart. 2009 Apr;95(7):570–576.
  • Fedeli U, Schievano E, Buonfrate D, et al. Increasing incidence and mortality of infective endocarditis: a population-based study through a record-linkage system. BMC Infect Dis. 2011 Feb;23(11):48.
  • Castonguay MC, Burner KD, Edwards WD, et al. Surgical pathology of native valve endocarditis in 310 specimens from 287 patients (1985-2004). Cardiovasc Pathol. 2013 Jan-Feb;22(1):19–27.
  • Breitkopf C, Hammel D, Scheld HH, et al. Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation. 2005 Mar 22;111(11):1415–1421.
  • Anguera I, Del Río A, Miró JM, et al. Staphylococcus lugdunensis infective endocarditis: description of 10 cases and analysis of native valve, prosthetic valve, and pacemaker lead endocarditis clinical profiles. Heart. 2005 Feb;91(2):e10.
  • Sabe MA, Shrestha NK, Gordon S, et al. Staphylococcus lugdunensis: a rare but destructive cause of coagulase-negative staphylococcus infective endocarditis. Eur Heart J Acute Cardiovasc Care. 2014 Sep;3(3):275–280.
  • Becker K, Skov RL, von Eiff C. Staphylococcus, micrococcus, and other catalase-positive cocci. In: Carroll KC, Pfaller MA, Landry ML, et al., editors. Manual of clinical microbiology. 12th ed. Washington (DC): ASM Press; 2019. p.367–398.
  • Wilson ML, Weinstein MP, Reller B. Laboratory detection of bacteremia and fungemia. In: Carroll KC, Pfaller MA, Landry ML, et al., editors. Manual of clinical microbiology. 12th ed. Washington (DC): ASM press; 2019:28–44.
  • Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev. 2006 Oct;19(4):788–802.
  • Bates DW, Goldman L, Lee TH. Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA. 1991 Jan 16;265(3):365–369.
  • Souvenir D, Anderson DE Jr., Palpant S, et al. Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients. J Clin Microbiol. 1998 Jul;36(7):1923–1926.
  • Little JR, Murray PR, Traynor PS, et al. A randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med. 1999 Aug;107(2):119–125.
  • Mimoz O, Karim A, Mercat A, et al. Chlorhexidine compared with povidone-iodine as skin preparation before blood culture. A randomized, controlled trial. Ann Intern Med. 1999 Dec 7;131(11):834–837.
  • Sheppard C, Franks N, Nolte F, et al. Improving quality of patient care in an emergency department: a laboratory perspective. Am J Clin Pathol. 2008 Oct;130(4):573–577.
  • Norberg A, Christopher NC, Ramundo ML, et al. Contamination rates of blood cultures obtained by dedicated phlebotomy vs intravenous catheter. JAMA. 2003 Feb 12;289(6):726–729.
  • Rupp ME, Cavalieri RJ, Marolf C, et al. Reduction in blood culture contamination through use of initial specimen diversion device. Clin Infect Dis. 2017 Jul 15;65(2):201–205.
  • Woods-Hill CZ, Fackler J, Nelson McMillan K, et al. Association of a clinical practice guideline with blood culture use in critically ill children. JAMA Pediatr. 2017 Feb 1;171(2):157–164.
  • Pulido L, Ghanem E, Joshi A, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008 Jul;466(7):1710–1715.
  • Del Pozo JL, Patel R. Clinical practice. Infection associated with prosthetic joints. 361/8/787 pii. N Engl J Med. 2009 Aug 20;361(8):787–794.
  • Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014 Apr;27(2):302–345.
  • Son WS, Shon OJ, Lee DC, et al. Efficacy of open debridement and polyethylene exchange in strictly selected patients with infection after total knee arthroplasty. Knee Surg Relat Res. 2017 Sep 1;29(3):172–179.
  • Kapadia BH, Berg RA, Daley JA, et al. Periprosthetic joint infection. Lancet. 2016 Jan 23;387(10016):386–394.
  • Lentino JR. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis. 2003 May 1;36(9):1157–1161.
  • Morgenstern M, Post V, Erichsen C, et al. Biofilm formation increases treatment failure in Staphylococcus epidermidis device-related osteomyelitis of the lower extremity in human patients. J Orthop Res. 2016 Nov;34(11):1905–1913.
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004 Feb;2(2):95–108.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Sci. 1999;284(5418):1318–1322.
  • Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol. 2015;5:14.
  • Vuong C, Voyich JM, Fischer ER, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol. 2004 Mar;6(3):269–275.
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001 Jul 14;358(9276):135–138.
  • Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev. 2016 Apr;29(2):401–427.
  • von Eiff C, Becker K. Small-colony variants (SCVs) of staphylococci: a role in foreign body-associated infections. Int J Artif Organs. 2007 Sep;30(9):778–785.
  • Ryder VJ, Chopra I, O’Neill AJ. Increased mutability of staphylococci in biofilms as a consequence of oxidative stress. PLoS One. 2012;7(10):e47695.
  • Savage VJ, Chopra I, O’Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother. 2013 Apr;57(4):1968–1970.
  • Gross M, Cramton SE, Götz F, et al. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun. 2001 May;69(5):3423–3426.
  • Heilmann C, Hussain M, Peters G, et al. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997 Jun;24(5):1013–1024.
  • Schaeffer CR, Woods KM, Longo GM, et al. Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun. 2015 Jan;83(1):214–226.
  • Conlon BP, Geoghegan JA, Waters EM, et al. Role for the A domain of unprocessed accumulation-associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype. J Bacteriol. 2014 Dec;196(24):4268–4275.
  • Vollmer W, Joris B, Charlier P, et al. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev. 2008 Mar;32(2):259–286.
  • Hell W, Meyer HG, Gatermann SG. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol. 1998 Aug;29(3):871–881.
  • Bourgeois I, Camiade E, Biswas R, et al. Characterization of AtlL, a bifunctional autolysin of Staphylococcus lugdunensis with N-acetylglucosaminidase and N-acetylmuramoyl-l-alanine amidase activities. FEMS Microbiol Lett. 2009 Jan;290(1):105–113.
  • Allignet J, England P, Old I, et al. Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett. 2002 Aug 6;213(2):193–197.
  • Hussain M, Steinbacher T, Peters G, et al. The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization. Int J Med Microbiol. 2015 Jan;305(1):129–139.
  • Hirschhausen N, Schlesier T, Schmidt MA, et al. A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol. 2010 Dec;12(12):1746–1764.
  • Herrmann M, Lai QJ, Albrecht RM, et al. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis. 1993 Feb;167(2):312–322.
  • Herrmann M, Vaudaux PE, Pittet D, et al. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis. 1988 Oct;158(4):693–701.
  • Qin Z, Ou Y, Yang L, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. 153/7/2083 pii. Microbiology. 2007 Jul;153(Pt 7):2083–2092.
  • Izano EA, Amarante MA, Kher WB, et al. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. AEM.02073-07 pii. Appl Environ Microbiol. 2008 Jan;74(2):470–476. .
  • Christner M, Heinze C, Busch M, et al. sarA negatively regulates Staphylococcus epidermidis biofilm formation by modulating expression of 1 MDa extracellular matrix binding protein and autolysis-dependent release of eDNA. Mol Microbiol. 2012 Oct;86(2):394–410.
  • Bose JL, Lehman MK, Fey PD, et al. Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS One. 2012;7(7):e42244.
  • Patti JM, Allen BL, McGavin MJ, et al. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617.
  • Schneewind O, Mihaylova-Petkov D, Model P. Cell wall sorting signals in surface proteins of gram-positive bacteria. Embo J. 1993 Dec;12(12):4803–4811.
  • Mazmanian SK, Liu G, Ton-That H, et al. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 1999 Jul 30;285(5428):760–763.
  • Hartford O, O’Brien L, Schofield K, et al. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology. 2001 Sep;147(Pt 9):2545–2552.
  • Ponnuraj K, Bowden MG, Davis S, et al. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell. 2003 Oct 17;115(2):217–228.
  • Arrecubieta C, Lee MH, Macey A, et al. SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem. 2007 Jun 29;282(26):18767–18776.
  • Arrecubieta C, Toba FA, von Bayern M, et al. SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections. PLoS Pathog. 2009 May;5(5):e1000411.
  • Arora S, Uhlemann AC, Lowy FD, et al. A novel MSCRAMM subfamily in coagulase negative staphylococcal species. Front Microbiol. 2016;7:540.
  • Bowden MG, Chen W, Singvall J, et al. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology. 2005 May;151(Pt 5):1453–1464.
  • Hofmans D, Khodaparast L, Khodaparast L, et al. Ses proteins as possible targets for vaccine development against Staphylococcus epidermidis infections. J Infect. 2018 Aug;77(2):119–130.
  • Shahrooei M, Hira V, Khodaparast L, et al. Vaccination with SesC decreases Staphylococcus epidermidis biofilm formation. IAI.00104-12 pii. Infect Immun. 2012 Oct;80(10):3660–3668.
  • Shahrooei M, Hira V, Stijlemans B, et al. Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. IAI.01464-08 pii. Infect Immun. 2009 Sep;77(9):3670–3678.
  • Christner M, Franke GC, Schommer NN, et al. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol. 2010 Jan;75(1):187–207.
  • Rohde H, Burandt EC, Siemssen N, et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007 Mar;28(9):1711–1720.
  • Sadovskaya I, Vinogradov E, Flahaut S, et al. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. 73/5/3007 pii. Infect Immun. 2005 May;73(5):3007–3017.
  • Mack D, Fischer W, Krokotsch A, et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol. 1996 Jan;178(1):175–183.
  • Maira-Litrán T, Kropec A, Abeygunawardana C, et al. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun. 2002 Aug;70(8):4433–4440.
  • Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996 Jun;20(5):1083–1091.
  • Gerke C, Kraft A, Süßmuth R, et al. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem. 1998 Jul 17;273(29):18586–18593.
  • Vuong C, Kocianova S, Voyich JM, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004 Dec 24;279(52):54881–54886.
  • Rohde H, Burdelski C, Bartscht K, et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol. 2005 Mar;55(6):1883–1895.
  • Tormo MA, Knecht E, Götz F, et al. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology. 2005 Jul;151(Pt 7):2465–2475.
  • Cucarella C, Solano C, Valle J, et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol. 2001 May;183(9):2888–2896.
  • Potter A, Ceotto H, Giambiagi-deMarval M, et al. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol. 2009 Jun;47(3):319–326.
  • Martínez-García S, Rodríguez-Martínez S, Cancino-Diaz ME, et al. Extracellular proteases of Staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. APMIS. 2018 Mar;126(3):177–185.
  • Vuong C, Gerke C, Somerville GA, et al. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 2003 Sep 1;188(5):706–718.
  • Mehlin C, Headley CM, Klebanoff SJ. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J Exp Med. 1999 Mar 15;189(6):907–918.
  • Yao Y, Sturdevant DE, Otto M. Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J Infect Dis. 2005 Jan 15;191(2):289–298.
  • Wang R, Khan BA, Cheung GY, et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. 42520 pii. J Clin Invest. 2011 Jan;121(1):238–248.
  • Raz R, Colodner R, Kunin CM. Who are you–Staphylococcus saprophyticus? Clin Infect Dis. 2005 Mar 15;40(6):896–898.
  • Meyer HG, Wengler-Becker U, Gatermann SG. The hemagglutinin of Staphylococcus saprophyticus is a major adhesin for uroepithelial cells. InfectImmun. 1996;64(9):3893–3896.
  • Gatermann S, John J, Marre R. Staphylococcus saprophyticus urease: characterization and contribution to uropathogenicity in unobstructed urinary tract infection of rats. InfectImmun. 1989;57(1):110–116.
  • Kline KA, Ingersoll MA, Nielsen HV, et al. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun. 2010 May;78(5):1943–1951.
  • Sakinç T, Kleine B, Michalski N, et al. SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett. 2009 Nov;301(1):28–34.
  • Vandenesch F, Etienne J, Reverdy ME, et al. Endocarditis due to Staphylococcus lugdunensis: report of 11 cases and review. Clin Infect Dis. 1993 Nov;17(5):871–876.
  • Heilbronner S, Holden MT, van Tonder A, et al. Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol Lett. 2011 Sep;322(1):60–67.
  • Heilbronner S, Hanses F, Monk IR, et al. Sortase A promotes virulence in experimental Staphylococcus lugdunensis endocarditis. Microbiol. 2013 Oct;159(Pt 10):2141–2152.
  • Frank KL, Patel R. Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun. 2007 Oct;75(10):4728–4742.
  • Missineo A, Di Poto A, Geoghegan JA, et al. IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun. 2014 Jun;82(6):2448–2459.
  • Rajendran NB, Eikmeier J, Becker K, et al. Important contribution of the novel locus comEB to extracellular DNA-dependent Staphylococcus lugdunensis biofilm formation. Infect Immun. 2015 Dec;83(12):4682–4692.
  • Pain M, Hjerde E, Klingenberg C, et al. Comparative genomic analysis of Staphylococcus haemolyticus reveals key to hospital adaptation and pathogenicity. Front Microbiol. 2019;10:2096.
  • Fredheim EG, Klingenberg C, Rohde H, et al. Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol. 2009 Apr;47(4):1172–1180.
  • Takeuchi F, Watanabe S, Baba T, et al. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol. 2005 Nov;187(21):7292–7308.
  • Decousser JW, Desroches M, Bourgeois-Nicolaos N, et al. Susceptibility trends including emergence of linezolid resistance among coagulase-negative staphylococci and meticillin-resistant Staphylococcus aureus from invasive infections. Int J Antimicrob Agents. 2015 Dec;46(6):622–630.
  • Mendes RE, Deshpande LM, Costello AJ, et al. Molecular epidemiology of Staphylococcus epidermidis clinical isolates from U.S. hospitals. Antimicrob Agents Chemother. 2012 Sep;56(9):4656–4661.
  • Cavanagh JP, Wolden R, Heise P, et al. Antimicrobial susceptibility and body site distribution of community isolates of coagulase-negative staphylococci. APMIS. 2016 Nov;124(11):973–978.
  • El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev. 2015 Jan;28(1):191–207.
  • Hamilton-Miller JM, Iliffe A. Antimicrobial resistance in coagulase-negative staphylococci. J Med Microbiol. 1985 Apr;19(2):217–226.
  • Knobloch JK, Jäger S, Huck J, et al. mecA is not involved in the σB-dependent switch of the expression phenotype of methicillin resistance in Staphylococcus epidermidis. Antimicrob Agents Chemother. 2005 Mar;49(3):1216–1219.
  • Sieradzki K, Roberts RB, Serur D, et al. Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. J Clin Microbiol. 1999 Jan;37(1):39–44.
  • Nunes AP, Teixeira LM, Iorio NL, et al. Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: characterisation of glycopeptide susceptibility profiles and cell wall thickening. Int J Antimicrob Agents. 2006 Apr;27(4):307–315.
  • Van Der Zwet WC, Debets-Ossenkopp YJ, Reinders E, et al. Nosocomial spread of a Staphylococcus capitis strain with heteroresistance to vancomycin in a neonatal intensive care unit. J Clin Microbiol. 2002 Jul;40(7):2520–2525.
  • Semmler T, Harrison EM, Lübke-Becker A, et al. A look into the melting pot: the mecC-harboring region is a recombination hot spot in Staphylococcus stepanovicii. PLoS One. 2016;11(1):e0147150.
  • Schoenfelder SM, Dong Y, Feßler AT, et al. Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments. Vet Microbiol. 2017;200:79–87.
  • Wedley AL, Dawson S, Maddox TW, et al. Carriage of Staphylococcus species in the veterinary visiting dog population in mainland UK: molecular characterisation of resistance and virulence. Vet Microbiol. 2014 May 14;170(1–2):81–88.
  • Kresken M, Becker K, Seifert H, et al. Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against gram-positive and gram-negative organisms, including multidrug-resistant pathogens, in Germany. Eur J Clin Microbiol Infect Dis. 2011 Sep;30(9):1095–1103.
  • Gordon RJ, Miragaia M, Weinberg AD, et al. Staphylococcus epidermidis colonization is highly clonal across US cardiac centers. J Infect Dis. 2012 May 1;205(9):1391–1398.
  • Barros EM, Ceotto H, Bastos MC, et al. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol. 2012 Jan;50(1):166–168.
  • Griffith GC, Levinson DC. Subacute bacterial endocarditis; a report on 57 patients treated with massive doses of penicillin. CalifMed. 1949;71(6):403–408.
  • Kashuba E, Dmitriev AA, Kamal SM, et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb Ecol Health Dis. 2017;28(1):1345574.
  • Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2000 Jun;44(6):1549–1555.
  • Deplano A, Vandendriessche S, Nonhoff C, et al. National surveillance of Staphylococcus epidermidis recovered from bloodstream infections in Belgian hospitals. J Antimicrob Chemother. 2016 Jul;71(7):1815–1819.
  • Flamm RK, Mendes RE, Ross JE, et al. Linezolid surveillance results for the United States: LEADER surveillance program 2011. Antimicrob Agents Chemother. 2013 Feb;57(2):1077–1081.
  • Zhanel GG, Adam HJ, Baxter MR, et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J Antimicrob Chemother. 2013 May;68(Suppl 1):i7–22.
  • Becker K, van Alen S, Idelevich EA, et al. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis. 2018 Feb;24(2):242–248.
  • Tsubakishita S, Kuwahara-Arai K, Baba T, et al. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother. 2010 Apr;54(4):1469–1475.
  • Schwendener S, Cotting K, Perreten V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep. 2017 Mar;08(7):43797.
  • Otto M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays. 2013 Jan;35(1):4–11.
  • Barbier F, Ruppé E, Hernandez D, et al. Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2010 Jul 15;202(2):270–281. .
  • Wu S, Piscitelli C, de Lencastre H, et al. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist. 1996 Winter;2(4):435–441.
  • Tsubakishita S, Kuwahara-Arai K, Sasaki T, et al. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother. 2010 Oct;54(10):4352–4359.
  • Rolo J, Worning P, Nielsen JB, et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec). Antimicrob Agents Chemother. 2017 Jun;61(6): e02302-16.
  • Biavasco F, Vignaroli C, Lazzarini R, et al. Glycopeptide susceptibility profiles of Staphylococcus haemolyticus bloodstream isolates. Antimicrob Agents Chemother. 2000 Nov;44(11):3122–3126.
  • Isnard C, Dhalluin A, Malandain D, et al. In vitro activity of novel anti-MRSA cephalosporins and comparator antimicrobial agents against staphylococci involved in prosthetic joint infections. J Glob Antimicrob Resist. 2018;13:221–225.
  • Ahlstrand E, Svensson K, Persson L, et al. Glycopeptide resistance in coagulase-negative staphylococci isolated in blood cultures from patients with hematological malignancies during three decades. Eur J Clin Microbiol Infect Dis. 2011 Nov;30(11):1349–1354.
  • Stenmark B, Hellmark B, Söderquist B. Genomic analysis of Staphylococcus capitis isolated from blood cultures in neonates at a neonatal intensive care unit in Sweden. Eur J Clin Microbiol Infect Dis. 2019 Nov;38(11):2069–2075.
  • Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008 Dec 19;322(5909):1843–1845.
  • Rossi CC, Souza-Silva T, Araújo-Alves AV, et al. CRISPR-cas systems features and the gene-reservoir role of coagulase-negative staphylococci. Front Microbiol. 2017;8:1545.
  • Varble A, Meaden S, Barrangou R, et al. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nat Microbiol. 2019 Jun;4(6):956–963.
  • Mašlaňová I, Wertheimer Z, Sedláček I, et al. Description and comparative genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., novel macrococci from human clinical material with virulence potential and suspected uptake of foreign DNA by natural transformation. Front Microbiol. 2018;9:1178.
  • Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014 Jul 15;59(2):147–159.
  • Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the infectious diseases society of America and the European society for microbiology and infectious diseases. Clin Infect Dis. 2011 Mar 01;52(5):e103–20.
  • Hischebeth GT, Randau TM, Ploeger MM, et al. Staphylococcus aureus versus Staphylococcus epidermidis in periprosthetic joint infection - Outcome analysis of methicillin-resistant versus methicillin-susceptible strains. Diagn Microbiol Infect Dis. 2019 Feb;93(2):125–130.
  • Heidary M, Khosravi AD, Khoshnood S, et al. Daptomycin. J Antimicrob Chemother. 2017 Oct 20;73(1):1–11.
  • Sader HS, Farrell DJ, Flamm RK, et al. Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a worldwide surveillance programme (2005-2012). Int J Antimicrob Agents. 2014 May;43(5):465–469.
  • Mendes RE, Jones RN, Deshpande LM, et al. Daptomycin activity tested against linezolid-nonsusceptible gram-positive clinical isolates. Microb Drug Resist. 2009 Dec;15(4):245–249.
  • Natoli S, Fontana C, Favaro M, et al. Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect Dis. 2009;9:83.
  • Rouse MS, Steckelberg JM, Patel R. In vitro activity of ceftobiprole, daptomycin, linezolid, and vancomycin against methicillin-resistant staphylococci associated with endocarditis and bone and joint infection. Diagn Microbiol Infect Dis. 2007 Jul;58(3):363–365.
  • Meeker DG, Beenken KE, Mills WB, et al. Evaluation of antibiotics active against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob Agents Chemother. 2016 Oct;60(10):5688–5694.
  • Raad I, Hanna H, Jiang Y, et al. Comparative activities of daptomycin, linezolid, and tigecycline against catheter-related methicillin-resistant Staphylococcus bacteremic isolates embedded in biofilm. Antimicrob Agents Chemother. 2007 May;51(5):1656–1660.
  • Corona Pérez-Cardona PS, Barro Ojeda V, Rodriguez Pardo D, et al. Clinical experience with daptomycin for the treatment of patients with knee and hip periprosthetic joint infections. J Antimicrob Chemother. 2012 Jul;67(7):1749–1754.
  • Guleri A, Utili R, Dohmen P, et al. Effectiveness and safety of daptomycin in patients with infective endocarditis undergoing heart valve replacement: a subgroup analysis from real-world data. Ther Adv Infect Dis. 2017 Mar;4(2):41–47.
  • Durante-Mangoni E, Casillo R, Bernardo M, et al. High-dose daptomycin for cardiac implantable electronic device-related infective endocarditis. Clin Infect Dis. 2012 Feb 1;54(3):347–354.
  • Seaton RA, Malizos KN, Viale P, et al. Daptomycin use in patients with osteomyelitis: a preliminary report from the EU-CORESM database. J Antimicrob Chemother. 2013 Jul;68(7):1642–1649.
  • Jiang JH, Dexter C, Cameron DR, et al. Evolution of daptomycin resistance in coagulase-negative staphylococci involves mutations of the essential two-component regulator WalKR. Antimicrob Agents Chemother. 2019 Mar;63(3):e01926-18.
  • Sader HS, Flamm RK, Jones RN. Antimicrobial activity of ceftaroline tested against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin from U.S. hospitals, 2008 to 2011. Antimicrob Agents Chemother. 2013 Jul;57(7):3178–3181.
  • Sader HS, Farrell DJ, Flamm RK, et al. Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative Staphylococcus causing infection in US hospitals. Diagn Microbiol Infect Dis. 2016 May;85(1):80–84.
  • von Eiff C, Friedrich AW, Becker K, et al. Comparative in vitro activity of ceftobiprole against staphylococci displaying normal and small-colony variant phenotypes. Antimicrob Agents Chemother. 2005 Oct;49(10):4372–4374.
  • Pfaller MA, Flamm RK, Mendes RE, et al. Ceftobiprole activity against gram-positive and -negative pathogens collected from the United States in 2006 and 2016. Antimicrob Agents Chemother. 2019 Jan;63(1):e01566-18.
  • Pfaller MA, Flamm RK, Duncan LR, et al. Antimicrobial activity of ceftobiprole and comparator agents when tested against contemporary gram-positive and -negative organisms collected from Europe (2015). Diagn Microbiol Infect Dis. 2018 May;91(1):77–84.
  • Henriksen AS, Smart J, Hamed K. Comparative activity of ceftobiprole against coagulase-negative staphylococci from the BSAC bacteraemia surveillance programme, 2013-2015. Eur J Clin Microbiol Infect Dis. 2018 Sep;37(9):1653–1659.
  • Hischebeth GTR, Gravius S, Molitor E, et al. Activity of ceftobiprole against Staphylococcus spec. isolates derived from foreign body associated infections. Diagn Microbiol Infect Dis. 2018 Jun;91(2):175–178.
  • Casapao AM, Davis SL, Barr VO, et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother. 2014 May;58(5):2541–2546.
  • Pani A, Colombo F, Agnelli F, et al. Off-label use of ceftaroline fosamil: a systematic review. Int J Antimicrob Agents. 2019 Jul 3;54:562–571. in press.
  • Destache CJ, Guervil DJ, Kaye KS. Ceftaroline fosamil for the treatment of gram-positive endocarditis: CAPTURE study experience. Int J Antimicrob Agents. 2019 May;53(5):644–649.
  • Pfaller MA, Flamm RK, Castanheira M, et al. Dalbavancin in-vitro activity obtained against gram-positive clinical isolates causing bone and joint infections in US and European hospitals (2011-2016). Int J Antimicrob Agents. 2018 Apr;51(4):608–611.
  • Abbas M, Paul M, Huttner A. New and improved? A review of novel antibiotics for gram-positive bacteria. Clin Microbiol Infect. 2017 Oct;23(10):697–703.
  • Fernández J, Greenwood-Quaintance KE, Patel R. In vitro activity of dalbavancin against biofilms of staphylococci isolated from prosthetic joint infections. Diagn Microbiol Infect Dis. 2016 Aug;85(4):449–451.
  • Morata L, Cobo J, Fernández-Sampedro M, et al. Safety and efficacy of prolonged use of dalbavancin in bone and joint infections. Antimicrob Agents Chemother. 2019 May;63(5):e02280-18.
  • Rappo U, Puttagunta S, Shevchenko V, et al. Dalbavancin for the treatment of osteomyelitis in adult patients: a randomized clinical trial of efficacy and safety. Open Forum Infect Dis. 2019 Jan;6(1):ofy331.
  • Tobudic S, Forstner C, Burgmann H, et al. Dalbavancin as primary and sequential treatment for gram-positive infective endocarditis: 2-year experience at the general hospital of Vienna. Clin Infect Dis. 2018 Aug 16;67(5):795–798.
  • Claessens J, Roriz M, Merckx R, et al. Inefficacy of vancomycin and teicoplanin in eradicating and killing Staphylococcus epidermidis biofilms in vitro. Int J Antimicrob Agents. 2015 Apr;45(4):368–375.
  • Ciofu O, Rojo-Molinero E, Macià MD, et al. Antibiotic treatment of biofilm infections. APMIS. 2017 Apr;125(4):304–319.
  • Conlon BP, Nakayasu ES, Fleck LE, et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013 Nov 21;503(7476):365–370.
  • Zahar A, Klaber I, Gerken AM, et al. Ten-year results following one-stage septic hip exchange in the management of periprosthetic joint infection. J Arthroplasty. 2019 Jun;34(6):1221–1226.
  • Chaftari AM, El Zakhem A, Jamal MA, et al. The use of minocycline-rifampin coated central venous catheters for exchange of catheters in the setting of Staphylococcus aureus central line associated bloodstream infections. BMC Infect Dis. 2014 Sep;24(14):518.
  • Zimmerli W, Sendi P. Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother. 2019 Feb;63(2):e01746-18.
  • Tschudin-Sutter S, Frei R, Dangel M, et al. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study. Clin Microbiol Infect. 2016 May;22(5):457e1–9.
  • Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. cir842 pii. Clin Infect Dis. 2012 Feb 1;54(3):393–407.
  • Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015 Nov 21;36(44):3075–3128.
  • Tornero E, Morata L, Martínez-Pastor JC, et al. Importance of selection and duration of antibiotic regimen in prosthetic joint infections treated with debridement and implant retention. J Antimicrob Chemother. 2016 May;71(5):1395–1401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.