2,355
Views
4
CrossRef citations to date
0
Altmetric
Review

Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine

Pages 799-805 | Received 31 Jan 2020, Accepted 23 Apr 2020, Published online: 04 May 2020

References

  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–1712.
  • Horvath P, Romero DA, Coûté-Monvoisin AC, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1401–1412.
  • Horvath P, Coûté-Monvoisin A-C, Romero DA, et al. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol. 2009;131(1):62–70.
  • Goldman L. The impact of hospitalists on medical education and the academic health system. Ann Intern Med. 1999;130(4 Pt 2):364–367.
  • Auerbach AD, Davis RB, Phillips RS. Physician views on caring for hospitalized patients and the hospitalist model of inpatient care. J Gen Intern Med. 2001;16(2):116–119.
  • Hauer KE, Wachter RM. Implications of the hospitalist model for medical students’ education. Acad Med. 2001;76(4):324–330.
  • Wachter RM, Goldman L. Zero to 50,000 — the 20th anniversary of the hospitalist. N Engl J Med. 2016;375(11):1009–1011.
  • Bradde S, Nourmohammad A, Goyal S, et al. The size of the immune repertoire of bacteria. Proc Natl Acad Sci U S A. 2020;117(10):5144–5151.
  • Ratner HK, Weiss DS. F. novicida CRISPR-Cas systems can functionally complement each other in DNA defense while providing target flexibility. J Bacteriol. 2020. DOI:10.1128/JB.00670-19
  • Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3(1):2510.
  • Barrangou R. Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 2015;16(1):247.
  • Huang Z, Tomitaka A, Raymond A, et al. Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Gene Ther. 2017;24(7):377–384.
  • Liao H-K, Gu Y, Diaz A, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015;6(1):6413.
  • Xu L, Yang H, Gao Y, et al. CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther. 2017;25(8):1782–1789.
  • Tirado-Gonzalez I, Czlonka E, Nevmerzhitskaya A, et al. CRISPR/Cas9 edited NSG mice as PDX models of human leukemia to address the role of niche-derived SPARC. Leukemia. 2017;22:1901–1919.
  • De Ravin SS, Li L, Wu X, et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci Transl Med. 2017;9(372):eaah3480.
  • Wachter RM, Goldman L. The emerging role of “hospitalists” in the American health care system. N Engl J Med. 1996;335(7):514–517.
  • Wachter RM. The hospitalist movement 10 years later: life as a Swiss army knife. MedGenMed. 2006;8(3):30.
  • Hsu M-N, Chang Y-H, Truong VA, et al. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv. 2019;37(8):107447.
  • Wang F, Wang L, Zou X, et al. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv. 2019;37(5):708–729.
  • Lea RA, Niakan KK. Human germline genome editing. Nat Cell Biol. 2019;21(12):1479–1489.
  • Wachter RM. The evolution of the hospitalist model in the United States. Med Clin North Am. 2002;86(4):687–706.
  • Wachter RM, Goldman L. The hospitalist movement 5 years later. JAMA. 2002;287(4):487–494.
  • Hauer KE, Wachter RM, McCulloch CE, et al. Effects of hospitalist attending physicians on trainee satisfaction with teaching and with internal medicine rotations. Arch Intern Med. 2004;164(17):1866–1871.
  • Kripalani S, Pope AC, Rask K, et al. Hospitalists as teachers. J Gen Intern Med. 2004;19(1):8–15.
  • Kulaga ME, Charney P, O’Mahony SP, et al. The positive impact of initiation of hospitalist clinician educators. J Gen Intern Med. 2004;19(4):293–301.
  • Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353(6299):aaf5573.
  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13. Nature. 2017;550(7675):280–284.
  • Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442.
  • Badiee P, Hashemizadeh Z, Ramzi M, et al. Non-invasive methods to diagnose fungal infections in pediatric patients with hematologic disorders. Jundishapur J Microbiol. 2016;9(11):e41573.
  • Bezdicek M, Lengerova M, Ricna D, et al. Rapid detection of fungal pathogens in bronchoalveolar lavage samples using panfungal PCR combined with high resolution melting analysis. Med Mycol. 2016;54(7):714–724.
  • Burillo A, Marín M, Cercenado E, et al. Evaluation of the Xpert Carba-R (Cepheid) assay using contrived bronchial specimens from patients with suspicion of ventilator-associated pneumonia for the detection of prevalent carbapenemases. PLoS One. 2016;11(12):e0168473.
  • Locatelli A. Towards a novel therapy against AIDS. Med Hypotheses. 2020;137:109569.
  • Meng B, Ip NCY, Abbink TEM, et al. ESCRT-II functions by linking to ESCRT-I in HIV-1 budding. Cell Microbiol. 2020;31:e13161.
  • Mert Kalkan B, Yagmur Kala E, Yuce M, et al. Development of gene editing strategies for human β-globin (HBB) gene mutations. Gene. 2020;734:144398.
  • Nestor MW, Wilson RL. Beyond Mendelian genetics: anticipatory biomedical ethics and policy implications for the use of CRISPR together with gene drive in humans. J Bioeth Inq. 2020. DOI:10.1007/s11673-019-09957-7
  • Ai J-W, Zhang Y, Zhang H-C, et al. Era of molecular diagnosis for pathogen identification of unexplained pneumonia, lessons to be learned. Emerg Microbes Infect. 2020;9(1):597–600.
  • Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): an updated overview for emergency clinicians. Emerg Med Pract. 2020;22(5):1–28.
  • Rubino S, Kelvin N, Bermejo-Martin JF, et al. As COVID-19 cases, deaths and fatality rates surge in Italy, underlying causes require investigation. J Infect Dev Ctries. 2020;14(3):265–267.
  • McCarthy MW, Real de Asua D, Fins JJ. The rise of hospitalists: an opportunity for clinical ethics. J Clin Ethics. 2017;28(4):325–332.
  • McCarthy M, Fins J. Teaching clinical ethics at the bedside: Osler and the essential role of the hospitalist. AMA J Ethics. 2017;18:2422–2431.
  • McCarthy MW, de Asua DR, Gabbay E, et al. Frequency of ethical issues on a hospitalist teaching service at an urban, tertiary care center. J Hosp Med. 2019;14(5):290–293.
  • McCarthy MW, Walsh TJ. The rise of hospitalists: an opportunity for infectious diseases investigators. Expert Rev Anti Infect Ther. 2018;36:1–5.
  • Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–444.
  • Abudayyeh OO, Gootenberg JS, Kellner MJ, et al. Nucleic acid detection of plant genes using CRISPR-Cas13. CRISPR J. 2019;2(3):165–171.
  • Kellner MJ, Koob JG, Gootenberg JS, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14(10):2986–3012.
  • Broeders M, Herrero-Hernandez P, Ernst MPT, et al. Sharpening the molecular scissors: advances in gene-editing technology. iScience. 2020;23(1):100789.
  • Ledford H. Quest to use CRISPR against disease gains ground. Nature. 2020;577(7789):156.
  • Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–439.
  • He Z-Y, Zhang Y-G, Yang Y-H, et al. In vivo ovarian cancer gene therapy using CRISPR-Cas9. Hum Gene Ther. 2018;29(2):223–233.
  • Engreitz J, Abudayyeh O, Gootenberg J, et al. CRISPR tools for systematic studies of RNA regulation. Cold Spring Harb Perspect Biol. 2019;11(8):a035386.
  • Freije CA, Myhrvold C, Boehm CK, et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 2019;76(5):826–37.e11.
  • Hirano S, Abudayyeh OO, Gootenberg JS, et al. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Nat Commun. 2019;10(1):1968.
  • Tse BN, Adalja AA, Houchens C, et al. Challenges and opportunities of nontraditional approaches to treating bacterial infections. Clin Infect Dis. 2017;65(3):495–500.
  • Quan J, Langelier C, Kuchta A, et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 2019;47(14):e83.
  • Modell JW, Jiang W, Marraffini LA. CRISPR–Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544(7648):101–104.
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–733.
  • Ju XD, Xu J, Sun ZS. CRISPR editing in biological and biomedical investigation. J Cell Biochem. 2017;41:1110–1121.
  • McCarthy MW, Denning DW, Walsh TJ. Future research priorities in fungal resistance. J Infect Dis. 2017;216(suppl_3):S484–S92.
  • McCarthy M, Rosengart A, Schuetz AN, et al. Mold infections of the central nervous system. N Engl J Med. 2014;371(2):150–160.
  • McCarthy MW, Kontoyiannis DP, Cornely OA, et al. Novel agents and drug targets to meet the challenges of resistant fungi. J Infect Dis. 2017;216(suppl_3):S474–S83.
  • Kwon MJ, Schütze T, Spohner S, et al. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi. Fungal Biol Biotechnol. 2019;6(1):15.
  • Britton C, Roberts B, Marks ND. Functional genomics tools for haemonchus contortus and lessons from other helminths. Adv Parasitol. 2016;93:599–623.
  • Reardon S. Welcome to the CRISPR zoo. Nature. 2016;531(7593):160–163.
  • McVeigh P, Maule AG. Can CRISPR help in the fight against parasitic worms? Elife. 2019;8. DOI:10.7554/eLife.44382
  • Bryant AS, Hallem EA. Terror in the dirt: sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist. 2018;8(3):496–510.
  • Cai P, Gobert GN, You H, et al. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int J Parasitol. 2016;46(7):453–463.
  • Zamanian M, Andersen EC. Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vector-borne nematode diseases. Febs J. 2016;283(17):3204–3221.
  • Baylis F, McLeod M. First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr Gene Ther. 2017;17(4):309–319.
  • Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–6817.
  • El-Sayed ASA, Abdel-Ghany SE, Ali GS. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol Biotechnol. 2017;101(10):3953–3976.
  • Shi L, Meng T, Zhao Z, et al. CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes. Gene. 2017;636:36–41.
  • Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37(9):1049–1058.
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–1737.
  • Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature. 2016;539(7630):479.
  • Scarfò I, Frigault MJ, Maus MV. CAR-based approaches to cutaneous T-cell lymphoma. Front Oncol. 2019;9:259.
  • Wang X, Scarfò I, Schmidts A, et al. Dynamic profiling of antitumor activity of CAR T cells using micropatterned tumor arrays. Adv Sci (Weinh). 2019;6(23):1901829.
  • Runser LA, Gauer RL, Houser A. Syncope: evaluation and differential diagnosis. Am Fam Physician. 2017;95(5):303–312.
  • Watkins DA, Johnson CO, Colquhoun SM, et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N Engl J Med. 2017;377(8):713–722.
  • Nguyen Q, Lim KRQ, Yokota T. Genome editing for the understanding and treatment of inherited cardiomyopathies. Int J Mol Sci. 2020;21(3):733.
  • Pan G, Cavalli M, Carlsson B, et al. rs953413 regulates polyunsaturated fatty acid metabolism by modulating ELOVL2 expression. iScience. 2020;23(2):100808.
  • Starnes L, Hall A, Cavallo A-L, et al. A patient-centric CRISPR-Cas9 in vitro cardiovascular safety model to examine genetic variability in calcium handling and its impact on drug-induced cardiotoxicity. J Pharmacol Toxicol Methods. 2019;99:106595.
  • Juengst ET. Crowdsourcing the moral limits of human gene editing? Hastings Cent Rep. 2017;47(3):15–23.
  • Mulvihill JJ, Capps B, Joly Y, et al. Ethical issues of CRISPR technology and gene editing through the lens of solidarity. Br Med Bull. 2017;122(1):17–29.
  • Plaza Reyes A, Lanner F. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development. 2017;144(1):3–7.
  • Heliste J, Chheda H, Paatero I, et al. Genetic and functional implications of an exonic TRIM55 variant in heart failure. J Mol Cell Cardiol. 2019;138:222–233.
  • Schoger E, Carroll KJ, Iyer LM, et al. CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circ Res. 2020;126(1):6–24.
  • Cook NL, Pjanic M, Emmerich AG, et al. CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocr Disord. 2019;19(1):115.
  • Bilir E, Vatanoğlu Lutz EE, Özgönül ML. Ethical and scientific issues of gene-edited twin by clustered regularly interspaced short palindromic repeats (CRISPR) Cas9 technology. J Turk Ger Gynecol Assoc. 2020. DOI:10.4274/jtgga.galenos.2019.2019.0153
  • Ke J, Tian J, Mei S, et al. Genetic predisposition to colon and rectal adenocarcinoma is mediated by a super-enhancer polymorphism coactivating CD9 and PLEKHG6. Cancer Epidemiol Biomarkers Prev. 2020;29(4):850–859.
  • Krooss SA, Dai Z, Schmidt F, et al. Ex vivo/in vivo gene editing in hepatocytes using “all-in-one” CRISPR-adeno-associated virus vectors with a self-linearizing repair template. iScience. 2020;23(1):100764.
  • The Lancet. The better edge of the CRISPR blade. Lancet. 2020;395(10218):90.
  • Ma -C-C, Wang Z-L, Xu T, et al. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2020;40:107502.
  • Li Q, Qin Z, Wang Q, et al. Applications of genome editing technology in animal disease modeling and gene therapy. Comput Struct Biotechnol J. 2019;17:689–698.
  • Hirsch F, Lemaitre C, Chneiweiss H, et al. Genome editing: promoting responsible research. Pharmaceut Med. 2019;33(3):187–191.
  • Schweikart SJ. What is prudent governance of human genome editing? AMA J Ethics. 2019;21(12):E1042–E1048.
  • Shaw D. The consent form in the Chinese CRISPR study: in search of ethical gene editing. J Bioeth Inq. 2020. DOI:10.1007/s11673-019-09953-x
  • Chapman CR, Caplan AL. How should physicians respond when they learn patients are using unapproved gene editing interventions? AMA J Ethics. 2019;21(12):E1021–E1028.
  • Foulkes AL, Soda T, Farrell M, et al. LEGAL AND ETHICAL IMPLICATIONS OF CRISPR APPLICATIONS IN PSYCHIATRY. North Carol Law Rev. 2019;97(5):1359–1398.
  • Zhang Y, Wang Y, Shao L, et al. Knockout of beta-2 microglobulin reduces stem cell-induced immune rejection and enhances ischaemic hindlimb repair via exosome/miR-24/Bim pathway. J Cell Mol Med. 2020;24(1):695–710.
  • Abudayyeh OO, Gootenberg JS, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365(6451):382–386.
  • Beretta M, Mouquet H. [CRISPR-Cas9 editing of HIV-1 neutralizing human B cells]. Med Sci (Paris). 2019;35(12):993–996.
  • Bocharnikov AV, Keegan J, Wacleche VS, et al. PD-1hiCXCR5– T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight. 2019;4(20). DOI:10.1172/jci.insight.130062
  • Hollister BM, Gatter MC, Abdallah KE, et al. Perspectives of sickle cell disease stakeholders on heritable genome editing. CRISPR J. 2019;2(6):441–449.
  • Odqvist L, Jevnikar Z, Riise R, et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019;78(10):1363–1370.
  • Yu L, Wang L, Yi H, et al. Beneficial effects of LRP6-CRISPR on prevention of alcohol-related liver injury surpassed fecal microbiota transplant in a rat model. Gut Microbes. 2020;1–15. DOI:10.1080/19490976.2020.1736457
  • Munck C, Sheth RU, Freedberg DE, et al. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nat Commun. 2020;11(1):95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.